PROBLEM 1 Notes, part 2

- Ref: Textbook "Enumerative Combinatorics Vol 2" by Richard Stanley Sec 7.13 "Symmetry of the RSK Algorithm" p. 324
 - · Sage Math documentation (Google "Sage Math" + a math concept)
 - · Blog post "Localized Version of Greene's thm" by Joel & Lewis

(Last update: Wed, June 3, 2020)

Sage Note:

To change the default permutation multiplication to be right to left: Sage: Permutations. options. mult = 'r2l'

1.8 Greene-Kleitman invariant/partition

Three (Greene, Kleitman, "The structure of Sperner K-families" 1976)
•
$$A_k$$
 is the size of a largest union of
k chains in the inversion poeet $I(\pi)$.
• D_k is the size of a largest union of
k antichains in the inversion poeet $I(\pi)$.
(In fact, we can replace poset " $I(\pi)$ " with any poset P,
define A_k to be the size of a largest union of k chains in P,
define D_k to be the size of a largest union of k antichains in P,
and get two conjugate partitions.
Here λ is often called the Greene-Kleitman invariant/partition of P)
some: for n in range(2,14):
...: Dom-pretes. Integer Partitions Dominumce Order (n)
...: print(n)
...: print(n)
...: print(n)
...: prene-shape()
some: we formutation ($[I_{kl}, S_{1,k}, G_{kl}, t]$) # MuL = $[S_{1,2}, L_{1,2}]$
cope: P_{k} greene-shape()
Lage: P_{k} greene-shape()
Lage: P_{k} greene-shape()
Is there a "localized" version of the Greene-Kleitman invariant?
Can we find an interpretation of A_{k}^{L} and D_{k}^{L} in a poset?
Start by observing patterns of A_{k}^{L} , D_{k}^{L} for the poset $I(\pi)$.
Note: $D_{k}^{L} = D_{k}$, but in general $D_{k}^{L} \neq D_{k}$ and $A_{k}^{L} \neq A_{k}$.
Pressible initial tasks

- Choose a few permutations T whose λ^{\perp} and μ^{\perp} we have computed before. Try to choose permutations with $\lambda^{\perp}_{2} > 1$.
- Draw the Hasse diagram of $I(\pi)$ using the nxn square and "shadow" def.
- Study the set of ascents for π . Describe it as a subset of the poset $I(\pi)$.

$$\frac{\text{Example}}{\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 7 & 6 & 1 & 4 & 2 & 5 \end{pmatrix}}.$$
 Compute the localized versions λ^{\perp} and Λ^{\perp} .

$$A_{1}^{L} = asc(\pi) + 1$$

= $\left| \begin{cases} 1 & 2 & 3 & 4 \\ 3 & 7 & 6 & 1 \end{cases} + 2 \begin{bmatrix} 7 \\ 4 & 2 \end{bmatrix} = 4$
Always unique, by def of $asc(\pi)$

$$A_{2}^{L} = \max \left(ASC^{*}(u_{1}) + ASC^{*}(u_{2}) \right)$$

over all disjoint subsequences of π
$$= \left| \begin{cases} 1 & 2 & 3 & 5 & 7 \\ 3 & 7 & 6 & 1 & 4 & 2 & 5 \\ 1 & 2 & 3 & 7 & 6 & 1 & 4 & 2 & 5 \\ 1 & 3 & 7 & 6 & 1 & 4 & 2 & 5 \\ 1 & 4 & 2 & 5 & 5 & 1 \\ 1 & 4 & 2 & 5 & 5 \\ 1 & 5 & 1 & 1 & 2 & 5 \\ 1 & 5 & 1 & 1 & 1 \\ 1 & 5 & 1 & 1 & 1 \\ 1 & 5 & 1 & 1 & 1 \\ 1 & 5 & 1 & 1 & 1 \\ 1 & 5 & 1 & 1 & 1 \\ 1 & 5 & 1 & 1 & 1 \\ 1 & 5 & 1 & 1 & 1 \\ 1 & 5 & 1 & 1 \\ 1 & 5 & 1 & 1 & 1 \\ 1 & 5 & 1 & 1 \\ 1$$

 $\lambda^{L} = 4, 1, 1, 1$

Update to PROBLEM I (part 2) (Wed, June 3)
I think other questions are more primising for this summer:
Reasoning is described below:
Perhaps the correct thing to do is to associate the BBS soliton partition
to a naturally-labeled pret (that is, a past typeTher with a
linear extension), but (have no specific conjecture.
Becall the map pp from Sn to posets
by assigning
$$\pi \in S_n$$
 to its inversion poset of permutation poset.
[Sage: Permutation ([2:(4:11:3]), permutation-poset()
Note that this map pp is not injective.
For example,
Sage: I remutation ([2:(4:11:3]), permutation-poset()
True
cage: view (Permutation ([2:(4:11:3]), permutation-poset()
True
cage: view (Permutation ([2:(4:11:3]), permutation-poset()
sige: view (Permutation ([2:(4:11:3]), permutation-poset()
sige: view (Permutation ([2:(4:11:3]), permutation-poset()
 $\pi(eire)$
For the samp pp is not injective.
For example,
 $f(f)$
 $f(f)$