

Figure 1: T_5 , with U_5 highlighted.

Draw the Hasse diagram of T_n by starting with (1, 2, ..., n) at the bottom, as level 0. Now each subsequent level consists of the minimal elements of what's left of T_n . It is not hard to see that level i will consist of the elements of T_n whose components sum to $\frac{n(n+1)}{2} + i$. These levels give us a decomposition of T_n into N antichains, but unfortunately only the top two levels ((n, n, ..., n)) and (n, n, ..., n, n-1, n) and the

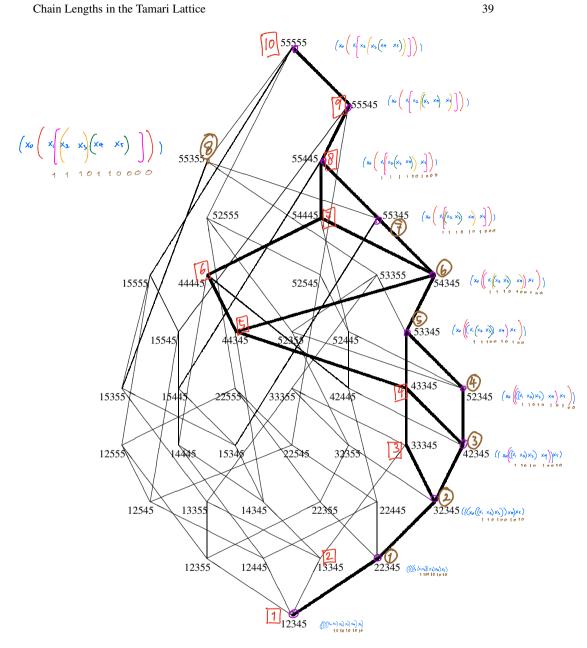


Figure 1: T_5 , with U_5 highlighted.

Draw the Hasse diagram of T_n by starting with (1, 2, ..., n) at the bottom, as level 0. Now each subsequent level consists of the minimal elements of what's left of T_n . It is not hard to see that level i will consist of the elements of T_n whose components sum to $\frac{n(n+1)}{2} + i$. These levels give us a decomposition of T_n into N antichains, but unfortunately only the top two levels ((n, n, ..., n)) and (n, n, ..., n, n-1, n) and the

39

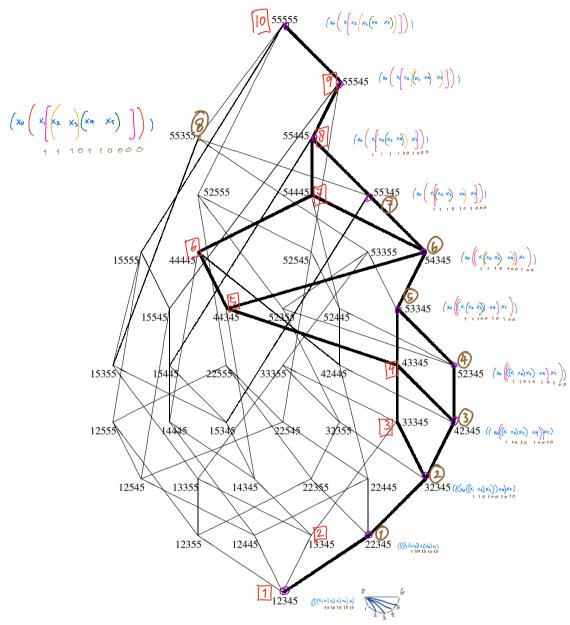


Figure 1: T_5 , with U_5 highlighted.

Draw the Hasse diagram of T_n by starting with (1, 2, ..., n) at the bottom, as level 0. Now each subsequent level consists of the minimal elements of what's left of T_n . It is not hard to see that level i will consist of the elements of T_n whose components sum to $\frac{n(n+1)}{2} + i$. These levels give us a decomposition of T_n into N antichains, but unfortunately only the top two levels ((n, n, ..., n)) and (n, n, ..., n, n - 1, n) and the

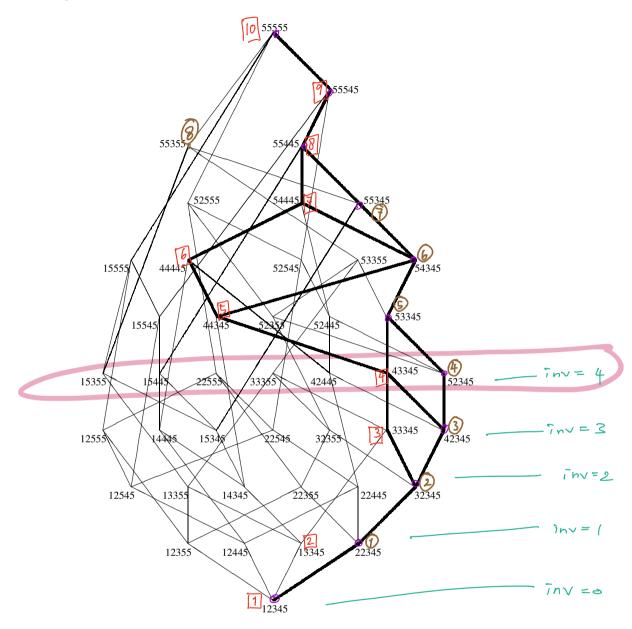
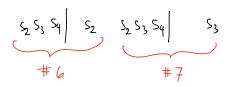


Figure 1: T_5 , with U_5 highlighted.

Draw the Hasse diagram of T_n by starting with (1, 2, ..., n) at the bottom, as level 0. Now each subsequent level consists of the minimal elements of what's left of T_n . It is not hard to see that level i will consist of the elements of T_n whose components sum to $\frac{n(n+1)}{2} + i$. These levels give us a decomposition of T_n into N antichains, but unfortunately only the top two levels ((n, n, ..., n)) and (n, n, ..., n, n-1, n) and the

with inversion number n-1=4The seven (S_1, S_2, S_3) -sortable elements (312-avoiding permutations in $S_n = S_3$) $S_n = S_3$

\$1 \$2 \$3 \$4 # 1
2
3
4
5



- above a row of 5 bottles in OBIS entry A 058300.
- Do you see what the natural bijection should be? Can you write a proof?