Worksheet 7.1-7.2

1 Definition of Laplace transform

Exercise 1

Find the Laplace transform $F(s)$ of $f(t)=e^{3 t+1}$ using the definition. What is the domain of $F(s)$?

Answer Problem 3 from Sec 7.1 recommended textbook problems. The domain of $F(s)$ is $(3, \infty)$

Optional sanity check: Find the Laplace transform of $f(t)$ and its domain using the table and using the linearity of the Laplace transform.

Exercise 2

Let

$$
f(t)=\left\{\begin{array}{l}
0 \text { if } 0 \leq t \leq 1 \\
1 \text { if } 1 \leq t \leq 2 \\
0 \text { if } t>2
\end{array}\right.
$$

Find the Laplace transform $F(s)$ of $f(t)$. What is the domain of $F(s)$?
Answer Problem 8 from Sec 7.1 recommended textbook problems. The domain of $F(s)$ is $(0, \infty)$

Exercise 3

Let

$$
f(t)=\left\{\begin{array}{l}
t \text { if } 0 \leq t \leq 1 \\
0 \text { if } 1<t
\end{array}\right.
$$

Find the Laplace transform $F(s)$ of $f(t)$. What is the domain of $F(s)$?
Answer Problem 9 from Sec 7.1 recommended textbook problems. The domain of $F(s)$ is $(0, \infty)$

2 Reading the table of Laplace transforms

Exercise 4

Use the table of Laplace transforms to find the Laplace transform $F(s)$ of $f(t)=t-2 e^{3 t}$ and the domain of $F(s)$.

Answer Problem 13 from Sec 7.1 recommended textbook problems. The domain of $F(s)$ is $(3, \infty)$

Exercise 5

Use the table of Laplace transforms to find the Laplace transform $F(s)$ of $f(t)=\cos ^{2}(2 t)$ and the domain of $F(s)$.

Answer Problem 17 from Sec 7.1 recommended textbook problems. The domain of $F(s)$ is $(0, \infty)$

Exercise 6

Use the table of Laplace transforms to find the inverse Laplace transform of

$$
F(s)=\frac{1}{s^{3 / 2}}
$$

Answer Problem 24 from Sec 7.1 recommended textbook problems.

Exercise 7

Use the table of Laplace transforms to find the inverse Laplace transform of

$$
F(s)=\frac{1}{s}-\frac{1}{s^{5 / 2}}
$$

Answer Problem 25 from Sec 7.1 recommended textbook problems.

Exercise 8

Use the table of Laplace transforms to find the inverse Laplace transform of

$$
F(s)=\frac{5-3 s}{s^{2}+9}
$$

Answer Problem 29 from Sec 7.1 recommended textbook problems.

Exercise 9

Use the table of Laplace transforms to find the inverse Laplace transform of

$$
F(s)=\frac{2}{s e^{3 s}}
$$

Answer Problem 32 from Sec 7.1 recommended textbook problems.

3 Using Laplace transform to solve IVPs whose ODEs are linear with constant coefficients

Exercise 10

Use Laplace transforms to solve the initial value problem

$$
y^{\prime \prime}-y^{\prime}-2 y=0 ; y(0)=0, y^{\prime}(0)=2
$$

Answer Problem 3 from Sec 7.2 recommended textbook problems Optional sanity check: Find the solution using Chapter 3 method.

Exercise 11

Use Laplace transforms to solve the initial value problem

$$
y^{\prime \prime}+3 y^{\prime}+2 y=t ; y(0)=0, y^{\prime}(0)=2
$$

Answer Problem 10 from Sec 7.2 recommended textbook problems Optional sanity check: Find the solution using Chapter 3 method.

Exercise 12

Use Laplace transforms to solve the initial value problem

$$
y^{\prime \prime}+y=\sin (2 t) ; y(0)=y^{\prime}(0)=0
$$

Answer Problem 5 from Sec 7.2 recommended textbook problems Optional sanity check: Find the solution using Chapter 3 method.

Exercise 13

Use Laplace transforms to solve the initial value problem

$$
y^{\prime \prime}+y=\cos (3 t) ; y(0)=1, y^{\prime}(0)=2
$$

Answer Problem 7 from Sec 7.2 recommended textbook problems Optional sanity check: Find the solution using Chapter 3 method.

4 Laplace transforms of integrals

Exercise 14

(a.) Write down the formula from the theorem about Laplace transforms of integrals.

Then, use this theorem to find the following ...
(b.)

$$
\mathscr{L}^{-1}\left\{\frac{1}{s(s-3)}\right\}
$$

Answer Problem 17 from Sec 7.2 recommended textbook problems
(c.)

$$
\mathscr{L}^{-1}\left\{\frac{2 s+1}{s\left(s^{2}+9\right)}\right\}
$$

Answer Problem 20 from Sec 7.2 recommended textbook problems
(d.)

$$
\mathscr{L}^{-1}\left\{\frac{1}{s^{2}\left(s^{2}+1\right)}\right\}
$$

Answer Problem 21 from Sec 7.2 recommended textbook problems

5 From Written Homework

Exercise 15

Apply the definition of Laplace transform to find the Laplace transform $F(s)$ of the function $f(t)=5 t e^{3 t}-6$ and the domain of $F(s)$.

Exercise 16

Find the inverse Laplace transform of

$$
F(s)=\frac{9+s}{4-s^{2}}+\frac{10}{s^{3}}-\frac{e^{-6 s}}{s}
$$

For this problem, you will have to use the table of Laplace transforms (Fig 7.1.2), but you may have to rewrite the function $F(s)$ first.

Exercise 17

Using Laplace Transform, solve the initial value problem

$$
y^{\prime \prime}+y=\cos (3 t) \quad y(0)=0, y^{\prime}(0)=0
$$

Show all work.
Optional Check: Verify that your answer is indeed the solution of the initial value problem.

