Worksheet 7.1–7.2

1 Definition of Laplace transform

Exercise 1

Find the Laplace transform F(s) of $f(t) = e^{3t+1}$ using the definition. What is the domain of F(s)?

Answer Problem 3 from Sec 7.1 recommended textbook problems. The domain of F(s) is $(3, \infty)$

Optional sanity check: Find the Laplace transform of f(t) and its domain using the table and using the linearity of the Laplace transform.

Exercise 2

Let

$$f(t) = \begin{cases} 0 \text{ if } 0 \le t \le 1\\ 1 \text{ if } 1 \le t \le 2\\ 0 \text{ if } t > 2 \end{cases}$$

Find the Laplace transform F(s) of f(t). What is the domain of F(s)?

Answer Problem 8 from Sec 7.1 recommended textbook problems. The domain of F(s) is $(0, \infty)$

Exercise 3

Let

$$f(t) = \begin{cases} t & \text{if } 0 \le t \le 1\\ 0 & \text{if } 1 < t \end{cases}$$

Find the Laplace transform F(s) of f(t). What is the domain of F(s)?

Answer Problem 9 from Sec 7.1 recommended textbook problems. The domain of F(s) is $(0, \infty)$

2 Reading the table of Laplace transforms

Exercise 4

Use the table of Laplace transforms to find the Laplace transform F(s) of $f(t) = t - 2e^{3t}$ and the domain of F(s).

Answer Problem 13 from Sec 7.1 recommended textbook problems. The domain of F(s) is $(3, \infty)$

Exercise 5

Use the table of Laplace transforms to find the Laplace transform F(s) of $f(t) = \cos^2(2t)$ and the domain of F(s).

Answer Problem 17 from Sec 7.1 recommended textbook problems. The domain of F(s) is $(0, \infty)$

Exercise 6

Use the table of Laplace transforms to find the inverse Laplace transform of

$$F(s) = \frac{1}{s^{3/2}}$$

Answer Problem 24 from Sec 7.1 recommended textbook problems.

Exercise 7

Use the table of Laplace transforms to find the inverse Laplace transform of

$$F(s) = \frac{1}{s} - \frac{1}{s^{5/2}}$$

Answer Problem 25 from Sec 7.1 recommended textbook problems.

Exercise 8

Use the table of Laplace transforms to find the inverse Laplace transform of

$$F(s) = \frac{5 - 3s}{s^2 + 9}$$

Answer Problem 29 from Sec 7.1 recommended textbook problems.

Exercise 9

Use the table of Laplace transforms to find the inverse Laplace transform of

$$F(s) = \frac{2}{se^{3s}}$$

Answer Problem 32 from Sec 7.1 recommended textbook problems.

3 Using Laplace transform to solve IVPs whose ODEs are linear with constant coefficients

Exercise 10

Use Laplace transforms to solve the initial value problem

$$y'' - y' - 2y = 0$$
; $y(0) = 0, y'(0) = 2$

Answer Problem 3 from Sec 7.2 recommended textbook problems Optional sanity check: Find the solution using Chapter 3 method.

Exercise 11

Use Laplace transforms to solve the initial value problem

$$y'' + 3y' + 2y = t$$
; $y(0) = 0, y'(0) = 2$

Answer Problem 10 from Sec 7.2 recommended textbook problems Optional sanity check: Find the solution using Chapter 3 method.

Exercise 12

Use Laplace transforms to solve the initial value problem

$$y'' + y = \sin(2t) \; ; \; y(0) = y'(0) = 0$$

Answer Problem 5 from Sec 7.2 recommended textbook problems Optional sanity check: Find the solution using Chapter 3 method.

Exercise 13

Use Laplace transforms to solve the initial value problem

$$y'' + y = \cos(3t)$$
; $y(0) = 1, y'(0) = 2$

Answer Problem 7 from Sec 7.2 recommended textbook problems Optional sanity check: Find the solution using Chapter 3 method.

4 Laplace transforms of integrals

Exercise 14

(a.) Write down the formula from the theorem about Laplace transforms of integrals.

Then, use this theorem to find the following ...

(b.)

$$\mathcal{L}^{-1}\left\{\frac{1}{s(s-3)}\right\}$$

Answer Problem 17 from Sec 7.2 recommended textbook problems

(c.)

$$\mathcal{L}^{-1}\left\{\frac{2s+1}{s(s^2+9)}\right\}$$

Answer Problem 20 from Sec 7.2 recommended textbook problems

(d.)

$$\mathcal{L}^{-1}\left\{\frac{1}{s^2(s^2+1)}\right\}$$

Answer Problem 21 from Sec 7.2 recommended textbook problems

5 From Written Homework

Exercise 15

Apply the definition of Laplace transform to find the Laplace transform F(s) of the function $f(t) = 5 t e^{3t} - 6$ and the domain of F(s).

Exercise 16

Find the inverse Laplace transform of

$$F(s) = \frac{9+s}{4-s^2} + \frac{10}{s^3} - \frac{e^{-6s}}{s}$$

For this problem, you will have to use the table of Laplace transforms (Fig 7.1.2), but you may have to rewrite the function F(s) first.

Exercise 17

Using Laplace Transform, solve the initial value problem

$$y'' + y = \cos(3t) \quad y(0) = 0, y'(0) = 0$$

Show all work.

Optional Check: Verify that your answer is indeed the solution of the initial value problem.