Sec 7.2 Transformation of IVPS

Thm (Laplace transforms of derivatives)
$\left[\begin{array}{c}f(t) \text { is differentiable except possibly at finitely many points } \\ \text { and } f^{\prime}(t) \text { is piecewise continuous }\end{array}\right]$
Let $f(t)$ be a continuous and piecewise smooth function for $t \geqslant 0$ and $|f(t)| \leqslant M e^{c t}$ for some nonnegative constants c, M;
$f(t)$ is of exponential order as $t \rightarrow \infty$
THEN
a.) $\mathcal{L}\left\{f^{\prime}(t)\right\}$ exists for $s>c$ and
b.) $\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0)$.

Computation for part (b):

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime}(t)\right\} & \stackrel{\text { def }}{=} \lim _{N \rightarrow \infty} \int_{0}^{N} e^{-s t} f^{\prime}(t) d t \quad u=e^{-s t} \quad d v=f^{\prime}(t) d t \\
& =\lim _{N \rightarrow \infty}\left(\left.e^{-s t} f(t)\right|_{0} ^{N}-\int_{0}^{N}-s e^{-s t} f(t) d t\right) \\
& =\lim _{N \rightarrow \infty} e^{-s N} f(N)-f(0)+s \lim _{N \rightarrow \infty} \int_{0}^{N} e^{-s t} f(t) d t \\
& =s\{[f(t)\}-f(0)
\end{aligned}
$$

From $\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0) \quad(e q .1)$
we get

$$
\begin{aligned}
\alpha\left[f^{\prime \prime}(t)\right\} & =s \mathcal{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s(s \mathcal{L}\{f(t)\}-f(0))-f^{\prime}(0) \\
& =s^{2} \mathcal{L}[f(t)\}-s f(0)-f^{\prime}(0) \\
\mathcal{L}\left\{f^{\prime \prime}(t)\right\} & =s^{2} \mathcal{L}\{f(t)\}-s f(0)-f^{\prime}(0) \quad(e q .2)
\end{aligned}
$$

We can continue with 3 rd, 4 th ,..., n-th derivative:

$$
\mathcal{L}\left\{f^{(n)}(t)\right\}=s^{n} \alpha\{f(t)\}-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0)
$$

Ex: Previously we computed

$$
\begin{aligned}
\mathcal{L}\{1\} & =\int_{0}^{\infty} e^{-s t}(1) d t \\
& =\lim _{N \rightarrow \infty}\left(\int_{0}^{N} e^{-s t} d t\right. \\
& =\frac{1}{s} \text { if } s>0
\end{aligned}
$$

E_{x} : Let $f(t)=t$.
(eq. 1) tells us $\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0)$,
so

$$
\begin{aligned}
\mathcal{L}\{1\} & =s \mathcal{L}\{t\}-0 \\
\frac{1}{s} & =s \mathcal{L}\{t\} \\
\mathcal{L}\{t\} & =\frac{1}{s^{2}} \quad \text { for } s>0
\end{aligned}
$$

Ex: Compute $\mathcal{L}\left\{t^{2}\right\}$ using the fact that $\mathcal{L}\{1\}=\frac{1}{s}$ for $s>0$.
Ans: Let $f(t)=t^{2}$

$$
\begin{aligned}
& f^{\prime}(t)=2 t \\
& f^{\prime \prime}(t)=2=2.1
\end{aligned}
$$

(eq. 2) tells us that $\mathcal{L}\left\{f^{\prime \prime}(t)\right\}=s^{2} \mathcal{L}\{f(t)\}-s f(0)-f^{\prime}(0)$

So

$$
\begin{aligned}
\mathcal{L}\{2 \cdot 1\} & =s^{2} \mathcal{L}\left\{t^{2}\right\}-s(0)-0 \\
2 \mathcal{L}\{1\} & =s^{2} \mathcal{L}\left\{t^{2}\right\} \\
2 & \frac{1}{s}=s^{2} \mathcal{L}\left\{t^{2}\right\} \\
\mathcal{L}\left\{t^{2}\right\} & =\frac{2}{s^{3}} \text { for } s>0 .
\end{aligned}
$$

Ex: Solve the IVP $y^{\prime \prime}-y^{\prime}-6 y=0, y(0)=2, y^{\prime}(0)=-1$.
Ans:
homogeneous

Step 1 Take Laplace transform of both sides:
Linearity
Laplace
Laplace
transform $\underbrace{\mathcal{\{}\left\{y^{\prime \prime}\right\}}-\underbrace{\mathcal{L}\left\{y^{\prime}\right\}}-6 \mathcal{L}\{y\}=0$

$$
\begin{gathered}
\left(s^{2} \alpha\{y(t)\}-s y(0)-y^{\prime}(0)\right)-(s \alpha\{y(t)\}-y(0))-6 \alpha\{y\}=0 \\
\left(s^{2}-s-6\right) \alpha\{y(t)\}+(-s+1) y(0)-y^{\prime}(0)=0 \\
\left(s^{2}-s-6\right) \mathcal{\alpha}\{y(t)\}+(-s+1) 2+1=0 \\
\left(s^{2}-s-6\right) \mathcal{\alpha}\{y(t)\}-2 s+3=0 \\
\mathcal{L}\{y(t)\}=\frac{2 s-3}{s^{2}-s-6}
\end{gathered}
$$

Next, take inverse Laplace transform, but first...

Step 2 Write $\{\{y(t)\}$ as a sum of partial fraction Denominator has distinct real roots 3 and -2
$\mathcal{L}\{y(t)\}=\frac{2 s-3}{s^{2}-s-6} \stackrel{\downarrow}{=} \frac{2 s-3}{(s-3)(s+2)}=\frac{A}{s-3}+\frac{B}{s+2}$
Multiply both sides by $(s-3)(s+2)$:
$2 s-3=A(s+2)+B(s-3)$
$2 s-3=(A+B) s+(2 A-3 B)$
$\left.\begin{array}{c}A+B=2 \\ 2 A-3 B=-3\end{array}\right\} \Rightarrow \begin{aligned} & A=2-B \\ & 2(2-B)-3 B=-3 \Rightarrow 4-5 B=-3 \Rightarrow 5 B=7\end{aligned}$

$$
B=\frac{7}{5}, A=2-\frac{7}{5}=\frac{3}{5}
$$

/Alternatively, evaluate at the roots -2 and 3 :
Set $s=-2: \quad 2(-2)-3=A(0)+B(-5) \Rightarrow \quad-7=-5 B \Rightarrow B=\frac{7}{5}$
Set $S=3: 2(3)-3=A(5)+B(0) \Rightarrow \quad 3=5 A \Rightarrow A=\frac{3}{5}$
This only works if the roots are all real and distinct.
$\left\{\{y(t)\}=\frac{2 s-3}{s^{2}-s-6}=\frac{3}{5} \frac{1}{s-3}+\frac{7}{5} \frac{1}{s+2}\right.$
double
check
Step 3 Find $y(t)$ by computing the inverse transform of the sum of partial fractions

Recall $\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$

$$
\begin{aligned}
y(t) & =\mathcal{L}^{-1}\left\{\frac{3}{5} \frac{1}{s-3}+\frac{7}{5} \frac{1}{s+2}\right\} \\
& =\frac{3}{5} \alpha^{-1}\left\{\frac{1}{s-3}\right\}+\frac{7}{5} \mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\} \begin{array}{l}
\text { by linearity of } \\
\text { inverse Lap } \\
\text { transform }
\end{array} \\
& =\frac{3}{5} e^{3 t}+\frac{7}{5} e^{-2 t} \quad \text { for } t \geqslant 0
\end{aligned}
$$

Check:

- Double check that $y(t)=\frac{3}{5} e^{3 t}+\frac{7}{5} e^{-2 t}$ satisfies the IVP
- Use Chapter 3 method to arrive at the same solution.

Recall other possible situations for partial fractions
(See Recommended textbook problems for more computation examples)

* Denominator has non-real roots $\pm i, \pm 2 i$
(we don't need to compute these roots)
Degree 1 polynomials

$$
\frac{2}{\left(s^{2}+1\right)\left(s^{2}+4\right)}=\frac{A s+B}{s^{2}+1}+\frac{C s+D}{s^{2}+4}
$$

See Sec 7.2 Problem 5 in textbook

* Denominator has non-real roots $\pm i, \pm 3 i$

Degree 1 polynomials

$$
\frac{s^{3}+10 s}{\left(s^{2}+1\right)\left(s^{2}+9\right)}=\frac{A s+B}{s^{2}+1}+\frac{C s+D}{s^{2}+9}
$$

See Sec 7.2 Problem 7 in textbook

* Denominator has a repeated root:

Degree 0 polynomials because $0,-1,-2$ are real roots

$$
\frac{1+2 s^{2}}{s^{2}(s+1)(s+2)}=\underbrace{\frac{A^{\downarrow}}{s}+\frac{B^{\downarrow}}{s^{2}}}+\frac{c^{\downarrow}}{s+1}+\frac{D}{s+2}
$$

because root 0 is repeated twice (multiplicity of root 0 is 2)

Ex: Use Laplace transforms to solve the IVP

$$
y^{\prime \prime}+4 y=\sin _{\uparrow}(3 t), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

non-homogeneous
Ans:
Step 1 Take \mathcal{L} of both sides to get $\mathcal{L}\{y(t)\}$:

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime \prime}+4 y\right\}=\mathcal{L}\{\sin (3 t)\} \\
&=s^{2} \mathcal{L}\{y(t)\} \\
& \mathcal{L}\left\{y^{\prime \prime}\right\} \\
&=s^{2} \mathcal{L}\{y(t)\}-s y(0)-y^{\prime}(0) \text { from (eq. 2) } \\
&\left(s^{2}+4\right)\{y(t)\}+4 \mathcal{L}\{y(t)\}=\frac{3}{s^{2}+9} \text { from } \sec 7.1 \text { tab } \\
& \mathcal{L}\{y(t)\}=\frac{3}{s^{2}+9} \\
&
\end{aligned}
$$

Step 2 Write $\mathcal{L}\{y(t)\}$ as a sum of partial fraction

- Roots of the denominator are $\pm 3 i, \pm 2 i$, each with multiplicity 1.

Degree 1 polynomials

$$
\mathcal{L}\{y(t)\}=\frac{3}{\left(s^{2}+9\right)\left(s^{2}+4\right)}=\frac{A s+B}{s^{2}+9}+\frac{C s+D}{s^{2}+4}
$$

- Multiply both sides by the denominator

$$
3=(A s+B)\left(s^{2}+4\right)+(C s+D)\left(s^{2}+9\right)
$$

- Group by $s^{3}, s^{2}, s, 1$:

$$
\begin{aligned}
& 3=A s^{3}+4 A s+B s^{2}+4 B+C s^{3}+9 C s+D s^{2}+9 D \\
& 3=(\underbrace{A+C}_{=0}) s^{3}+(\underbrace{B+D}_{=0}) s^{2}+(\underbrace{4 A+9 C}_{=0}) s+(\underbrace{4 B+9 D}_{=3})
\end{aligned}
$$

$$
\begin{aligned}
& B=-D \\
& 4(-D)+9 D=3 \Rightarrow 5 D=3 \Rightarrow D=\frac{3}{5} \Rightarrow B=-\frac{3}{5} \\
& \text { - } \mathcal{K}\{y(t)\}=\frac{3}{\left(s^{2}+9\right)\left(s^{2}+4\right)}=-\frac{3}{5} \frac{1}{s^{2}+9}+\frac{3}{5} \frac{1}{s^{2}+4}
\end{aligned}
$$

Step 3 Find $y(t)$ by computing the inverse transform of the sum of partial fractions

- From Sec 7.1 table, $\mathcal{S}\{\sin (a t)\}=\frac{a}{s^{2}+a^{2}}$

$$
\begin{aligned}
y(t) & =\mathcal{L}^{-1}\left\{-\frac{3}{5} \frac{1}{s^{2}+9}+\frac{3}{5} \frac{1}{s^{2}+4}\right\} \\
& =-\frac{1}{5} \mathcal{L}^{-1}\left\{\frac{3}{s^{2}+9}\right\}+\frac{3}{5} \cdot \frac{1}{2} \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\} \text { in numerator } \\
& =-\frac{1}{5} \sin (3 t)+\frac{3}{10} \sin (2 t) \text { for } t \geqslant 0
\end{aligned}
$$

Check:

- Double check that $y(t)$ satisfies the IVP
- Use Chapter 3 method to arrive at the same solution.

Ex:
use the formula $\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0)$ from the "Laplace transforms of derivatives" the to find
the Laplace transform of $f(t)=t e^{7 t}$
Ans: $f^{\prime}(t)=e^{7 t}+7 t e^{7 t}$

$$
\begin{aligned}
& \mathcal{L}\left\{e^{7 t}+7 t e^{7 t}\right\}_{\mathcal{A}}=s\left\{\left\{t e^{7 t}\right\}-0 e^{7.0}\right. \\
& \mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0) \\
& \mathcal{L}\left\{e^{7 t}\right\}+7 \mathcal{L}\left\{t e^{7 t}\right\}=s \mathcal{L}\left\{t e^{7 t}\right\}-0 \\
& \mathcal{L}\left\{e^{7 t}\right\}=(s-7) \mathcal{L}\left\{t e^{7 t}\right\} \\
& \text { equal } \frac{1}{\text { for } \frac{1}{s-7}}=(s-7) \mathcal{L}\left\{t e^{7 t}\right\}
\end{aligned}
$$

$s>^{7}$

$$
\alpha\left\{t e^{7 t}\right\}=\frac{1}{(s-7)^{2}} \quad \text { for } \quad s>7
$$

In general...
Example 4 Show that

$$
\mathcal{L}\left\{t e^{a t}\right\}=\frac{1}{(s-a)^{2}} .
$$

Solution If $f(t)=t e^{a t}$, then $f(0)=0$ and $f^{\prime}(t)=e^{a t}+a t e^{a t}$. Hence Theorem 1 gives

$$
\mathcal{L}\left\{e^{a t}+a t e^{a t}\right\}=\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}=s \mathcal{L}\left\{t e^{a t}\right\} .
$$

It follows from the linearity of the transform that

$$
\mathcal{L}\left\{e^{a t}\right\}+a \mathcal{L}\left\{t e^{a t}\right\}=s \mathcal{L}\left\{t e^{a t}\right\} .
$$

Hence

$$
\mathscr{L}\left\{t e^{a t}\right\}=\frac{\mathcal{L}\left\{e^{a t}\right\}}{s-a}=\frac{1}{(s-a)^{2}}
$$

because $\mathscr{L}\left\{e^{a t}\right\}=1 /(s-a)$.

THEOREM 2 Transforms of Integrals

If $f(t)$ is a piecewise continuous function for $t \geqq 0$ and satisfies the condition of exponential order $|f(t)| \leqq M e^{c t}$ for $t \geqq T$, then

$$
\begin{equation*}
\mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{1}{s} \mathscr{L}\{f(t)\}=\frac{F(s)}{s} \tag{17}
\end{equation*}
$$

for $s>c$. Equivalently,

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{\frac{F(s)}{s}\right\}=\int_{0}^{t} f(\tau) d \tau \tag{18}
\end{equation*}
$$

Ex:

$$
\mathcal{L}^{-1}\left\{\frac{1}{s(s-a)}\right\}=\int_{0}^{t} \mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\} d \tau=\int_{0}^{t} e^{a \tau} d \tau=\frac{1}{a}\left(e^{a t}-1\right)
$$

Ex:

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{1}{s^{2}(s-a)}\right\} & =\int_{0}^{t} \mathcal{L}^{-1}\left\{\frac{1}{s(s-a)}\right\} d \tau=\int_{0}^{t} \frac{1}{a}\left(e^{a \tau}-1\right) d \tau \\
& =\left[\frac{1}{a}\left(\frac{1}{a} e^{a \tau}-\tau\right)\right]_{0}^{t}=\frac{1}{a^{2}}\left(e^{a t}-a t-1\right)
\end{aligned}
$$

