7.1 Laplace transforms and inverse transforms

Motivation: Consider an oDE

$$
m y^{\prime \prime}+c y^{\prime}+k y=F(t) \quad \begin{gathered}
\text { (corresponding to "vibrating } \\
\text { spring-mass" system) }
\end{gathered}
$$

This is a 2nd-order linear ODE.
If $F(t)$ is continuous, then if we specify initial conditions
we know the solution exists and is unique.
Q: What if $F(t)$ is not continuous?
A class of functions which are almost as nice as continuous functions
is the class of piecewise continuous functions.
$\varepsilon x:$

FIGURE 7.1.3. The graph of a piecewise continuous function; the solid dots indicate values of the function at discontinuities.

FIGURE 7.1.4. The graph of the unit step function.

To deal with these situation, well use Laplace transforms.

$$
\begin{aligned}
& \left\{\begin{array}{c}
\text { differential } \\
\text { equations }
\end{array}\right\} \xrightarrow[\text { Laplace transform }]{ } \rightarrow\left\{\begin{array}{l}
\text { algebraic } \\
\text { equations }
\end{array}\right\} \\
& \text { containing } \begin{array}{ll}
\text { derivatives }
\end{array} \\
& \begin{array}{l}
\text { only algebraic operations: } \\
\text { addition, multiplication, } \\
\text { raising to a power, } \\
\text { taking root }
\end{array}
\end{aligned}
$$

Recall Definition of improper integrals
Note: An improper integral is not an integral

* Let a be a real number and consider the definite integral $\int_{a}^{b} g(t) d t \quad$ if $b>a$.
* If $\lim _{N \rightarrow \infty} \int_{a}^{N} g(t) d t$ exists
(that is, $\int_{a}^{N} g(t) d t$ goes to a number as $\left.N \rightarrow \infty\right)$
then we write

$$
\int_{a}^{\infty} g(t) d t \stackrel{d e f}{=} \lim _{N \rightarrow \infty} \int_{a}^{N} g(t) d t \quad \text { and }
$$

This is an example of an improper integral we say $\int_{a}^{\infty} g(t) d t$ converges.

* If the limit doesn't exist, we say $\int_{a}^{\infty} g(t) d t$ diverges. (possibly $\left.\int_{a}^{\infty} g(t) d t=\infty\right)$

Ex: Evaluate the improper integral $\int_{1}^{\infty} \frac{1}{t^{2}} d t$.
Ans * If $N>1$, then $\int_{1}^{N} \frac{1}{t^{2}} d t=\int_{1}^{N} t^{-2} d t$

$$
\begin{aligned}
& =-\left.t^{-1}\right|_{t=1} ^{t=N} \\
& =-\frac{1}{N}+1
\end{aligned}
$$

* So $\int_{1}^{\infty} \frac{1}{t^{2}} d t=\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{1}{t^{2}} d t$

$$
\begin{aligned}
& =\lim _{N \rightarrow \infty}-\frac{1}{N}+1 \\
& =1
\end{aligned}
$$

We say $\int_{1}^{\infty} \frac{1}{t^{2}} d t$ converges

Definition of Laplace transform

* Let $f(t)$ be a function defined for all $t \geqslant 0$.

The Laplace transform of $f(t)$, denoted by $\mathcal{L}\{f(t)\}$, is a function of s defined as

$$
F(s)=\mathcal{L}\{f(t)\} \stackrel{\text { def }}{=} \int_{0}^{\infty} e^{-s t} f(t) d t
$$

for all numbers s for which the improper integral converges
This says that the domain of the function $F(s)$
is the set of numbers s for which $\int_{0}^{\infty} e^{-s t} f(t) d t$ converges

Ex: Use the definition to find the Laplace transform $\{\{f(t)\}$ of the function $f(t)=e^{3 t}$ and the domain of $\mathcal{L}\{f(t)\}$.

Ans

$$
\begin{aligned}
& \text { * If } N>0 \text {, then } \int_{0}^{N} e^{-s t} e^{3 t} d t=\int_{0}^{N} e^{(-s+3) t} d t \\
& =\left.\frac{e^{(-s+3) t}}{-s+3}\right|_{t=0} ^{t=N} \\
& =\frac{1}{-s+3}\left[e^{(-s+3) N}-1\right] \\
& \text { * } F(s)=\mathcal{L}\left\{e^{3 t}\right\}:=\int_{0}^{\infty} e^{-s t} e^{3 t} d t \\
& =\lim _{N \rightarrow \infty} \int_{0}^{N} e^{-s t} e^{3 t} d t \\
& =\lim _{N \rightarrow \infty} \frac{1}{-s+3}\left[e^{(-s+3) N}-1\right] \\
& =\frac{1}{s-3} \text { if }(-s+3)<0 \quad \text { (see below) }
\end{aligned}
$$

* So $F(s)=\left\{\left\{e^{3 t}\right\}=\frac{1}{s-3}\right.$ and the domain of $F(s)$ is $(3, \infty)$

Recall:

If $a>0, \quad \lim _{N \rightarrow \infty} e^{a N}=\infty$
So $\lim _{N \rightarrow \infty} e^{a N}$ does nit exist

Q: What is the Laplace transform of $e^{7 t}$?
Ans: $\quad \mathcal{L}\left\{e^{7 t}\right\}=\frac{1}{s-7}$ for $s>7$ domain is $(7, \infty)$

Q: What is the Laplace transform of e^{-t} ?
Ans: $\quad \alpha\left\{e^{-t}\right\}=\frac{1}{s+1}$ for $s>-1$
domain is $(-1, \infty)$
Q: What is the Laplace transform of $e^{a t}$?
Ans: $\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$ for $s>a$ domain is (a, ∞)

Tho 1 (Linearity of the Laplace transform)
Let $c_{1}, c_{2} \in \mathbb{R}$. Then

$$
\mathcal{L}\left\{c_{1} f(t)+c_{2} g(t)\right\}=c_{1} \mathcal{L}\{f(t)\}+c_{2} \mathcal{L}\{g(t)\}
$$

for all s such that both $\mathcal{L}\{f(t)\}$ and $\mathcal{L}\{g(t)\}$ exist.
(The linearity of Laplace transform comes from the linearity of integration.)

$$
\begin{aligned}
E_{x}: \mathcal{L}\left\{2 e^{3 t}-100 e^{7 t}+e^{-t}\right\} & =2 \mathcal{L}\left\{e^{3 t}\right\}-100 \mathcal{L}\left\{e^{7 t}\right\}+\mathcal{L}\left\{e^{-t}\right\} \\
& =2 \frac{1}{s-3}-100 \frac{1}{s-7}+\frac{1}{s+1}
\end{aligned}
$$

for $s>7$.
(The domain is $(7, \infty)$ because it is the intersection of $(3, \infty),(7, \infty)$, and $(-1, \infty)$.)

Thm 2 (Existence of Laplace transform)
IF:
a.) $f(t)$ is a piecewise continuous function for $t \geqslant 0$
b.) $\underbrace{|f(t)| \leqslant M e^{c t} \text { for some constants } M, C}$
say " $f(t)$ is of exponential order as $t \rightarrow \infty$ "
THEN:
the Laplace transform $F(s)=\{\{f(t)\}$ exists for all $s>c$.

Say:
"A piecewise continuous function with controlled exponential growth has a Laplace transform."

Corollary $₫$ meaning a consequence of this thm
If $f(t)$ satisfies conditions (a) and (b) from the above tho, then $\lim _{s \rightarrow \infty} F(s)=0$

This means that only functions $F(s)$ such that $\lim _{s \rightarrow \infty} F(s)=0$ can be Laplace transforms of "reasonable" functions.
$\varepsilon x \quad G(s)=\frac{s}{s+1}$ cannot be the Laplace transform of a resonable function because $\lim _{s \rightarrow \infty} G(s)=1 \neq 0$.

Examples of piecewise continuous functions
Unit step functions (Ex $1 \& 2$)
$E x$ 1. $u(t)= \begin{cases}0 & \text { for } t<0 \\ 1 & \text { for } t \geqslant 0\end{cases}$

Ex 2. $\quad u_{a}(t)=u(t-a)= \begin{cases}0 & \text { for } t-a<0 \\ & (\text { for } t<a) \\ 1 & \text { for } t-a \geqslant 0 \\ & (\text { for } t \geqslant a)\end{cases}$

Ex 3. $\quad f(t)= \begin{cases}\cos (t) & \text { for } t<0 \\ t & \text { for } 0 \leqslant t \leqslant 1 \\ -t+1 & \text { for } t>1\end{cases}$

Ex. Not a piecewise continuous function

$$
f(t)=\frac{1}{\cos t}
$$

because, e.g, $\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} f(t)=\infty$ limit doesr't exist

$$
\begin{aligned}
& \text { Ex 1: } \mathcal{L}\{u(t)\}=\int_{0}^{\infty} e^{-s t} u(t) d t=\int_{0}^{\infty} e^{-s t} d t=\left.\lim _{N \rightarrow \infty} \frac{e^{-s t}}{-s}\right|_{t=0} ^{t=N} \\
& =\lim _{N \rightarrow \infty}-\frac{1}{s}\left(e^{-s N}-1\right) \\
& =\frac{1}{s} \text { for } s>0 \\
& \text { Ex 2: If } a>0 \text {, } \\
& \text { (domain is }(0, \infty) \text {) } \\
& \mathcal{L}\left\{u_{a}(t)\right\}=\int_{0}^{\infty} e^{-s t} u_{a}(t) d t=\int_{0}^{a} e^{-s t} u_{a}(t) d t+\int_{a}^{\infty} e^{-s t} u_{a}(t) d t \\
& =\int_{a}^{\infty} e^{-s t} d t=\lim _{N \rightarrow \infty}-\frac{1}{s}\left(e^{-s N}-e^{-s a}\right)=\frac{e^{-a s}}{s} \text { for } s>0 \\
& \text { (domain is }(0, \infty) \text {) } \\
& \text { Ex 3: } \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=\int_{0}^{1} e^{-s t} t d t+\int_{1}^{\infty} e^{-s t}(-t+1) d t \\
& \text { (from Ex } 3 \text { above) } \\
& \text { definite } \\
& \text { Improper } \\
& \text { integral integral }
\end{aligned}
$$

Finish using integration by parts

The gamma function $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t \quad$ defined for $x>0$
Some properties:

$$
\begin{aligned}
& \Gamma(1)=1 \text { and } \begin{array}{rlr}
\Gamma(x+1) & =x \Gamma(x) \quad \text { for } & x>0 \\
\varepsilon x: \Gamma(5) & =\Gamma(4+1) & n!= \\
& =4 \Gamma(4) & \\
& =4.3 \Gamma(3) & \\
& =4.3 .2 \Gamma(2) & \\
& =4.3 .2 .1 . \Gamma(1) & \\
& =4! \\
\Gamma(n+1)=n!
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\Gamma\left(\frac{1}{2}\right) & =\sqrt{\pi} \\
\Gamma\left(\frac{5}{2}\right) & =\Gamma\left(\frac{3}{2}+1\right) \\
& =\frac{3}{2} \Gamma\left(\frac{3}{2}\right) \\
& =\frac{3}{2} \Gamma\left(\frac{1}{2}+1\right) \\
& =\frac{3}{2} \frac{1}{2} \Gamma\left(\frac{1}{2}\right) \\
& =\frac{3}{4} \sqrt{\pi}
\end{aligned}
$$

The gamma function is useful for computing the Laplace transforms of powers of t : Let $f(t)=t^{a}$ where $a \in \mathbb{R}$ and $a>-1$.

$$
\begin{aligned}
\mathcal{L}\left\{t^{a}\right\} & =\int_{0}^{\infty} e^{-s t} t^{a} d t \quad\binom{u=s t}{\frac{u}{s}=t \quad d t=\frac{1}{s} d u} \\
& =\int_{u=0}^{u=\infty} e^{-u}\left(\frac{u}{s}\right)^{a} \frac{1}{s} d u \\
& =\frac{1}{s^{a+1}} \int_{0}^{\infty} e^{-u} u^{a} d u \\
& =\frac{1}{s^{a+1}} \Gamma(a+1) \quad \text { for all } s>0
\end{aligned}
$$

$$
\text { Then } \begin{aligned}
\mathcal{L}\{t\} & =\frac{1}{s^{2}} \Gamma(2)=\frac{1}{s^{2}} 1!=\frac{1}{s^{2}} \\
\mathcal{L}\left\{t^{2}\right\} & =\frac{1}{s^{3}} \Gamma(3)=\frac{1}{s^{3}} 2!=\frac{2}{s^{3}}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\mathcal{L}\left\{t^{3}\right\}=\frac{1}{s^{4}} \Gamma(4)=\frac{1}{s^{4}} 3!=\frac{6}{s^{4}} \\
\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}
\end{array}\right\} \begin{aligned}
& \text { for } s>0
\end{aligned}
$$

By linearity of Laplace transforms, we have

$$
\mathcal{L}\left\{3 t^{2}+4 t^{\frac{3}{2}}-7\right\}=3 \mathcal{L}\left\{t^{2}\right\}+4 \mathcal{L}\left\{t^{\frac{3}{2}}\right\}-7 \mathcal{L}\{1\}
$$

$\boldsymbol{f (t)}$	$\boldsymbol{F}(s)$	
1	$\frac{1}{s}$	$(s>0)$
t	$\frac{1}{s^{2}}$	$(s>0)$
$t^{n}(n \geqq 0)$	$\frac{n!}{s^{n+1}}$	$(s>0)$
$t^{a}(a>-1)$	$\frac{\Gamma(a+1)}{s^{a+1}}$	$(s>0)$
$e^{a t}$	$\frac{1}{s-a}$	$(s>a)$
$\cos k t$	$\frac{s}{s^{2}+k^{2}}$	$(s>0)$
$\sin k t$	$\frac{k}{s^{2}+k^{2}}$	$(s>0)$
$\cosh k t$	$\frac{s}{s^{2}-k^{2}}$	$(s>\|k\|)$
$\sinh k t$	$\frac{k}{s^{2}-k^{2}}$	$(s>\|k\|)$
$e^{-a s}$ s	$(s>0)$	

$$
=3 \frac{2}{s^{3}}+4 \frac{1}{s^{\frac{5}{2}}} \Gamma\left(\frac{5}{2}\right)-7 \frac{1}{s}
$$

$$
=\frac{6}{s^{3}}+4 \frac{1}{s^{5 / 2}} \underbrace{\frac{3}{4} \sqrt{\pi}}_{\text {from earlier }}-\frac{7}{s}
$$

$$
=\frac{6}{s^{3}}+\frac{3 \sqrt{\pi}}{s^{5 / 2}}-\frac{7}{s}
$$

FIGURE 7.1.2. A short table of
Laplace transforms.

Inverse Laplace transforms

Def: If $F(s)=\mathcal{L}\{f(t)\}$ is the Laplace transform of $f(t)$, then we say that

$$
f(t)=\mathcal{L}^{-1}\{F(s)\}
$$

is the inverse Laplace transform of $F(s)$.
Ex 1: $\quad \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}=\underset{q}{1} \quad$ because $\mathcal{L}\{1\}=\frac{1}{s}$
domain of domain of

$$
F(s)=\frac{1}{s} \quad f(t)=1
$$

is $(0, \infty)$ is $[0, \infty)$

Ex 2: $\mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\}=e_{4}^{-2 t} \quad$ because $\mathcal{L}\left\{e^{-2 t}\right\}=\frac{1}{s+2}$
domain of domain of

$$
\begin{array}{ll}
F(s)=\frac{1}{s+2} & f(t)=e^{-2 t} \\
\text { is }(-2, \infty) & \text { is }[0, \infty)
\end{array}
$$

Linearity of inverse transform

Because of the linearity of the Laplace transform, the inverse transform is also linear.

Ex $1 \quad \mathcal{L}^{-1}\left\{\frac{1}{s^{3}}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{2} 2 \frac{1}{s^{3}}\right\}_{\underset{\sim}{2}}=$	$\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{2}{s^{3}}\right\}=\frac{1}{2} t^{2}$
domain of	linearity
$F(s)$ is	of \mathcal{L}^{-1}
$(0, \infty)$	from
	table domain of
	(fig $7.1 \cdot 2)$

linearity of \mathcal{L}^{-1}

$$
E \times 2 \mathcal{L}^{-1}\{\underbrace{\frac{3}{s-2}+\frac{1}{s}-\frac{s}{s^{2}+36}}\} \stackrel{b}{=} 3 \mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+36}\right\}
$$

domain of $F(S)$ is $(2, \infty)$

$$
\text { from table } \sim^{\Delta}=\underbrace{3 e^{2 t}+1-\cos (6 t)}_{\text {domain of } f(t) \text { is }[0, \infty)}
$$

$\boldsymbol{f}(\boldsymbol{t})$	$\boldsymbol{F}(\boldsymbol{s})$	
1	$\frac{1}{s}$	$(s>0)$
t	$\frac{1}{s^{2}}$	$(s>0)$
$t^{n}(n \geqq 0)$	$\frac{n!}{s^{n+1}}$	$(s>0)$
$t^{a}(a>-1)$	$\frac{\Gamma(a+1)}{s^{a+1}}$	$(s>0)$
$e^{a t}$	$\frac{1}{s-a}$	$(s>a)$
$\cos k t$	$\frac{s}{s^{2}+k^{2}}$	$(s>0)$
$\sin k t$	$\frac{k}{s^{2}+k^{2}}$	$(s>0)$
$\cosh k t$	$\frac{s}{s^{2}-k^{2}}$	$(s>\|k\|)$
$\sinh k t$	$\frac{k}{s^{2}-k^{2}}$	$(s>\|k\|)$
$u(t-a)$	$\frac{e^{-a s}}{s}$	$(s>0)$

FIGURE 7.1.2. A short table of Laplace transforms.

> The 3 (Uniqueness of inverse Laplace transform) Suppose $f(t)$ and $g(t)$ are such that $$
F(s)=\{\{f(t)\} \text { and } G(s)=\mathcal{L}\{g(t)\} .
$$ If $F(s)=G(s)$ for all $s>c$ for some $c \in \mathbb{R}$, then $f(t)=g(t)$ wherever on $[0, \infty)$ both f and g are continuous.

