Motivation: Consider an ODE

This is a 2nd-order linear ODE.

If F(t) is continuous, then if we specify initial conditions

we know the solution exists and is unique.

Q: What if F(t) is not continuous?

A class of functions which are almost as nice as continuous functions is the class of <u>piecewise</u> continuous functions.

Ex:

FIGURE 7.1.4. The graph of the unit step function.

To deal with these situation, we'll use Laplace transforms. { differential } Laplace transform } algebraic equations } equations } containing derivatives only algebraic operations: addition, multiplication, raising to a power, taking root

Recall Definition of improper integrals
* Let a be a real number and consider the is not an integral
the definite integral
$$\int_{a}^{b} g(t) dt$$
 if $b > a$.
* If $\lim_{N \to \infty} \int_{a}^{N} g(t) dt$ exists
(that is, $\int_{a}^{N} g(t) dt$ goes to a number as $N \to \infty$)
then we write
 $\int_{a}^{\infty} g(t) dt \stackrel{\text{lef}}{:=} \lim_{N \to \infty} \int_{a}^{N} g(t) dt$ and
This is an example of an improper integral
we say $\int_{a}^{\infty} g(t) dt$ converges.
* If the limit doesn't exist, we say $\int_{a}^{\infty} g(t) dt \frac{diverges}{dt}$.
(possibly $\int_{a}^{\infty} g(t) dt = \infty$)

EX: Evaluate the improper integral
$$\int_{1}^{\infty} \frac{1}{t^2} dt$$
.
Ans
* |f N>1, then $\int_{1}^{N} \frac{1}{t^2} dt = \int_{1}^{N} t^{-2} dt$
 $= -t^{-1} \int_{t=1}^{t=N} \frac{1}{1 + 1}$

We say
$$\int_{1}^{\infty} \frac{1}{t^2} dt$$
 converges

Definition of daplace transform
* Let
$$f(t)$$
 be a function defined for all $t \ge 0$.
The Laplace transform of $f(t)$, denoted by $d[f(t)]$,
is a function of s defined as
 $F(s) = d[f(t)] \stackrel{\text{def}}{=} \int_{0}^{\infty} e^{-st} f(t) dt$
for all numbers s for which the improper integral converges
This says that the domain of the function $F(s)$
is the set of numbers s for which $\int_{0}^{\infty} e^{-st} f(t) dt$ converges
Review Integration by parts!

Ex: Use the definition to find the Laplace transform
$$\pounds[f(t)]$$
 of
the function $f(t) = e^{3t}$ and the domain of $\pounds[f(t)]$.
Ans $\#$ If $N > 0$, then $\int_{0}^{N} e^{-st} e^{3t} dt = \int_{0}^{N} e^{(-s+s)t} dt$
 $= \frac{e^{(s+s)t}}{-s+s} \Big|_{t=0}^{t=N}$
 $= \frac{1}{-s+s} \Big[e^{(s+s)N} - 1 \Big]$
 $\# F(s) = \pounds \Big[e^{3t} \Big] := \int_{0}^{\infty} e^{-st} e^{3t} dt$
 $= \lim_{N \to \infty} \int_{0}^{N} e^{-st} e^{3t} dt$
 $= \lim_{N \to \infty} \frac{1}{-s+s} \Big[e^{(s+s)N} - 1 \Big]$
 $= \frac{1}{s-s} \quad \text{if } (-s+s) < 0 \quad (\text{see below})$
 $\# S_{0} F(s) = \pounds \Big[e^{3t} \Big] = \frac{1}{s-s} \text{ and the domain of F(s) is } (3,\infty)$

Q: What is the Laplace transform of
$$e^{7t}$$
?
Ans: $\pounds \{e^{7t}\} = \frac{1}{s-7}$ for $s > 7$
domain is $(7, \infty)$
Q: What is the Laplace transform of e^{-t} ?
Ans: $\pounds \{e^{-t}\} = \frac{1}{s+1}$ for $s > -1$
domain is $(-1, \infty)$
Q: What is the Laplace transform of e^{at} ?
Ans: $\pounds \{e^{at}\} = \frac{1}{s-a}$ for $s > a$

domain is (a, w)

Thm 1 (Linearity of the Laplace transform)
Let
$$C_1, C_2 \in \mathbb{R}$$
. Then
 $\int \{C_1, f(t) + C_2, g(t)\} = C_1 \int \{f(t)\} + C_2 \int \{g(t)\}$
for all s such that both $\int \{f(t)\}$ and $\int \{g(t)\}$ exist.
(The linearity of Laplace transform comes from

(The linearity of haplace transform comes from the linearity of integration.)

Ex:
$$\mathcal{L}\left[2e^{3t} - 100e^{7t} + e^{-t}\right] = 2\mathcal{L}\left[e^{3t}\right] - 100\mathcal{L}\left[e^{7t}\right] + \mathcal{L}\left[e^{-t}\right]$$

$$= 2\frac{1}{S-3} - 100\frac{1}{S-7} + \frac{1}{S+1}$$
for $S > 7$.
(The domain is $(7, \infty)$ because it is the intersection
of $(3, \infty), (7, \infty)$, and $(-1, \infty)$.)

Thm 2 (Existence of Laplace transform)
IF:
a) f(t) is a piecewise continuous function for
$$t \ge 0$$

b) $\frac{|f(t)| \le Me^{Ct}}{|f(t)|} \le Me^{Ct}}{|f(t)|}$ for some constants M, C
soy "f(t) is of exponential order as $t \to \infty$ "
THEN:
the Laplace transform $F(s) = \mathcal{L}\{f(t)\}\)$ exists for all $s > c$.

Say:

"A piecewise continuous function with controlled exponential growth has a Laplace transform."

Corollary & meaning a consequence of this thm
If
$$f(t)$$
 satisfies conditions (a) and (b) from the above thm,
then $\lim_{s\to\infty} F(s) = 0$
This means that only functions $F(s)$ such that $\lim_{s\to\infty} F(s) = 0$
can be Laplace transforms of "reasonable" functions.
Ex $G(s) = \frac{s}{s+1}$ cannot be the Laplace transform
of a resonable function because $\lim_{s\to\infty} G(s) = 1 \neq 0$.

Examples of piecewise continuous functions
Unit step functions
$$(Ex 1 \neq 2)$$

 $Ex 1. \quad u(t) = \begin{cases} 0 & \text{for } t < 0 \\ 1 & \text{for } t \geqslant 0 \end{cases}$
 $Ex 2. \quad u_a(t) = u(t-a) = \begin{cases} 0 & \text{for } t-a < 0 \\ (\text{for } t < a) \\ 1 & \text{for } t-a \geqslant 0 \\ (\text{for } t \geqslant a) \end{cases}$

 $f(t) = \frac{1}{\cos t}$ because, e.g., $\lim_{x \to \frac{\pi}{2}} f(t) = \infty$ limit doesn't exist

$$E_{X} 1: \int_{a} \left\{ u(t_{0}) \right\} = \int_{a}^{\infty} e^{-st} u(t_{0}) dt = \int_{a}^{\infty} e^{-st} dt = \int_{N \to \infty}^{\infty} \frac{e^{-st}}{1} \int_{t_{0}}^{t_{0}} \frac{e^{-st}}{1} \left(e^{-sN} - 1 \right) \\ = \frac{1}{s} - \int_{a}^{t_{0}} e^{-st} \frac{1}{s} \left(e^{-sN} - 1 \right) \\ = \frac{1}{s} - \int_{a}^{t_{0}} e^{-st} \frac{1}{s} \left(e^{-sN} - 1 \right) \\ \int_{a}^{t_{0}} \left\{ u_{n}(t_{0}) \right\} = \int_{a}^{\infty} e^{-st} u_{n}(t_{0}) dt = \int_{a}^{t_{0}} e^{-st} u_{n}(t_{0}) dt + \int_{a}^{\infty} e^{-st} u_{n}(t_{0}) dt \\ = \int_{a}^{\infty} e^{-st} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) = \frac{e^{-sT}}{s} \int_{a}^{t_{0}} e^{-st} \int_{a}^{t_{0}} e^{-st} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-st} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) = \frac{e^{-sT}}{s} \int_{a}^{t_{0}} e^{-st} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-st} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) = \frac{e^{-sT}}{s} \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sT} - s \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \frac{1}{s} \left(e^{-sN} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sT} - s \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sT} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sT} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sT} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sT} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sT} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sT} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac{1}{s} \left(e^{-sT} - e^{-sT} \right) dt \\ \int_{a}^{t_{0}} e^{-sT} \frac$$

[(n+1) = n!

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$\Gamma\left(\frac{5}{2}\right) = \Gamma\left(\frac{3}{2}+1\right)$$

$$= \frac{3}{2}\Gamma\left(\frac{3}{2}\right)$$

$$= \frac{3}{2}\Gamma\left(\frac{1}{2}+1\right)$$

$$= \frac{3}{2}\frac{1}{2}\Gamma\left(\frac{1}{2}\right)$$

$$= \frac{3}{4}\sqrt{\pi}$$

The gamma function is useful for computing the Laplace transforms of powers of t: Let $f(t) = t^a$ where $a \in \mathbb{R}$ and a > -1.

$$\begin{aligned} & \left\{ \left\{ +a^{2}\right\} = \int_{0}^{\infty} e^{-st} t^{a} dt \\ & = \int_{u=0}^{u=\infty} e^{-u} \left(\frac{u}{s} \right)^{a} \frac{1}{s} du \end{aligned} \\ & = \frac{1}{s^{a+1}} \int_{0}^{\infty} e^{-u} u^{a} du \\ & = \frac{1}{s^{a+1}} \int_{0}^{\infty} (a+1) & \text{for all } s > 0 \end{aligned}$$

Then
$$\mathcal{L} \{ t \} = \frac{1}{S^2} \Gamma(2) = \frac{1}{S^2} 1! = \frac{1}{S^2}$$

 $\mathcal{L} \{ t^2 \} = \frac{1}{S^3} \Gamma(3) = \frac{1}{S^3} 2! = \frac{2}{S^3}$
 $\mathcal{L} \{ t^3 \} = \frac{1}{S^4} \Gamma(4) = \frac{1}{S^4} 3! = \frac{6}{S^4}$
 $\mathcal{L} \{ t^n \} = \frac{n!}{S^{n+1}}$

Ву	lineari ty	r of	Laplace	e transforms, we have
	€ { st	² + 4 t	<u>3</u> - 7	$\frac{1}{2} = 3 \int \left\{ t^{2} \right\} + 4 \int \left\{ t^{\frac{3}{2}} \right\} - 7 \int \left\{ t^{3} \right\}$
				1= t°
	f(t)	<i>F</i> (s)	$= 3 \frac{2}{53} + 4 \frac{1}{5} \left[\frac{5}{2} - 7 \frac{1}{5} \right]$
	1	$\frac{-}{s}$	(s > 0)	Si Siz
	$t^{n} (n \ge 0)$	$\frac{\overline{s^2}}{\frac{n!}{s^{n+1}}}$	(s > 0)	$= \frac{6}{c^3} + 4\frac{1}{c^5}\frac{3}{4}\sqrt{\pi} - \frac{7}{s}$
	$t^a (a > -1)$	$\frac{\Gamma(a+1)}{s^{a+1}}$	(s > 0)	From earlier
	e ^{at}	$\frac{1}{s-a}$	(s > a)	$-\frac{6}{3} + \frac{3\sqrt{\pi}}{7} - \frac{7}{7}$
	$\cos kt$	$\frac{s}{s^2 + k^2}$	(s > 0)	<u>S</u> ³ <u>S</u> ⁵ / ₂ S
	sin k t	$\frac{k}{s^2 + k^2}$	(s > 0)	
	$\cosh k t$	$\frac{s}{s^2 - k^2}$	(s > k)	
_	sinh k t	$\frac{k}{s^2 - k^2}$	(s > k)	
	u(t-a)	$\frac{e^{-as}}{s}$	(s > 0)	
	FIGURE 7.1.2 Laplace transfo	. A short tab orms.	ble of	

Inverse Laplace transforms

Def: If $F(s) = \mathcal{L} \{f(t)\}$ is the Laplace transform of f(t), then we say that $f(t) = \mathcal{L}^{-1} \{F(s)\}$ is the <u>inverse Laplace transform</u> of F(s). Ex 1: $\mathcal{L}^{-1} \{\frac{1}{s}\} = 1$ because $\mathcal{L} \{1\} = \frac{1}{s}$ domain of domain of $F(s) = \frac{1}{s}$ f(t) = 1is $(0,\infty)$ is $[0,\infty)$

$$Ex 2: \int_{-1}^{-1} \left\{ \begin{array}{c} \frac{1}{S+2} \right\} = e^{-2t} \text{ because } \int_{-2t}^{1} \left\{ e^{-2t} \right\} = \frac{1}{S+2}$$

domain of domain of
$$F(s) = \frac{1}{S+2} \quad f(t) = e^{-2t}$$

is $(-1,\infty) \quad \text{is } [0,\infty)$

Because of the linearity of the Laplace transform, the inverse transform is also linear.

 $Ex \ 2 \qquad \int_{-1}^{-1} \left\{ \frac{3}{5-2} + \frac{1}{5} - \frac{5}{5^{2}+36} \right\} \stackrel{f}{=} 3 \int_{-1}^{-1} \left\{ \frac{1}{5-2} \right\} + \int_{-1}^{-1} \left\{ \frac{1}{5} \right\} - \int_{-1}^{-1} \left\{ \frac{5}{5^{2}+36} \right\}$

from table
$$= 3 e^{2t} + 1 - cos(6t)$$

domain of $f(t)$ is $[0, \infty)$

f(t)	F(s)		
1	$\frac{1}{s}$	(s > 0)	
t	$\frac{1}{s^2}$	(s > 0)	
$t^n \ (n \ge 0)$	$\frac{n!}{s^{n+1}}$	(s > 0)	
$t^{a} (a > -1)$	$\frac{\Gamma(a+1)}{s^{a+1}}$	(s > 0)	
e ^{at}	$\frac{1}{s-a}$	(s > a)	
$\cos k t$	$\frac{s}{s^2 + k^2}$	(s > 0)	
sin k t	$\frac{k}{s^2 + k^2}$	(s > 0)	
$\cosh k t$	$\frac{s}{s^2 - k^2}$	(s > k)	
sinh k t	$\frac{k}{s^2 - k^2}$	(s > k)	
u(t-a)	$\frac{e^{-as}}{s}$	(s > 0)	

FIGURE 7.1.2. A short table of Laplace transforms.

Thm 3 (Uniqueness of inverse Laplace transform)
Suppose
$$f(t)$$
 and $g(t)$ are such that
 $F(s)=\mathcal{L}{f(t)}$ and $G(s)=\mathcal{L}{g(t)}$.
If $F(s)=G(s)$ for all $s > c$ for some $c \in \mathbb{R}$,
then $f(t)=g(t)$ wherever on $[0,\infty)$ both f and g are continuous.