A little bit of linear algebra for Sec 5.1, 5.2

- A matrix is a block of numbers, ex: $M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$ • The size of a matrix M is m × n size of M is 2×3 if M has m rows and n columns
- · Read rows from top to bottom Read columns from left to right
- The (i,j)-th element of a matrix M
 is the entry on the i-th row
 and j-th column of M
- · Matrix addition / subtraction:
 - * If A, B are matrices of the same then we add/ subtract the entries to get A+B and A-B

Note: A+B=B+A (matrix addition is commutative)

- * If A, B have different sizes, then A+B and A-B are not defined
- · Scalar multiplication : "number"

If M is a matrix and c is a number, then cM is the matrix obtained by multiplying c to every entry in M

Row 1
Row 2

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$$

$$M$$

size,
$$A = \begin{pmatrix} 2 & i & 4 \\ 3 & 0 & 6 \end{pmatrix}$$
, $B = \begin{pmatrix} -i & 3 & -2 \\ 1 & -2 & 1 \end{pmatrix}$
 $A + B = \begin{pmatrix} 2 - i & i + 3 & 4 - 2 \\ 3 + i & -2 & 6 + i \end{pmatrix} = \begin{pmatrix} 1 & 4 & 2 \\ 4 & -2 & 7 \end{pmatrix}$
 $A - B = \begin{pmatrix} 2 - - i & i - 3 & 4 - -2 \\ 3 - 1 & -2 & 6 - i \end{pmatrix} = \begin{pmatrix} 3 & -2 & 6 \\ 2 & 2 & 5 \end{pmatrix}$
 $\begin{pmatrix} 2 & i \\ -1 & 4 \end{pmatrix} + \begin{pmatrix} 3 & i & 4 \\ 2 & 6 & 8 \end{pmatrix}$ is not defined
 $\xi_{X}: M = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix}$, $c = 100$

 $CM = 100 \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & \frac{1}{6} \end{pmatrix} = \begin{pmatrix} 100 & -200 & 300 \\ 400 & 500 & \frac{100}{6} \end{pmatrix}$

• Matrix multiplication:
* Let A be an mxn matrix and
let B be an nxk matrix.
Then AB is an mxk matrix.
The (i,j)-th element of AB
is the "dot product" of
the i-th row of A and
the j-th column of B

$$A = \begin{pmatrix} 2 & i & -l \\ 0 & 3 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ -l & 0 \\ 3 & -l \end{pmatrix}$$

$$Size 2x^{3} \quad Size (3x2)$$

$$A = \begin{pmatrix} 2 & 1 & -l \\ 0 & 3 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ -l & 0 \\ 3 & -l \end{pmatrix}$$

$$Size (3x2)$$

$$A = \begin{pmatrix} 2 & 1 & -l \\ 0 & 3 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ -l & 0 \\ 3 & -l \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 1 & -l \\ 0 & 3 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ -l & 0 \\ 3 & -l \end{pmatrix}$$

$$Size (3x2)$$

$$A = \begin{pmatrix} 2 & 1 & -l \\ 0 & 3 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 1 & -l \\ 0 & 3 & 2 \end{pmatrix}$$

$$B = \begin{pmatrix} 2 & 1 & -l \\ 0 & 3 & 2 \end{pmatrix}$$

$$Size (3x2)$$

$$A = \begin{pmatrix} 2 & 1 & -l \\ 0 & 3 & 2 \end{pmatrix}$$

$$Size (3x2)$$

$$B = \begin{pmatrix} 2 & 2 & 1 & -l \\ 0 & 3 & 2 \end{pmatrix}$$

$$Size (3x2)$$

$$B = \begin{pmatrix} -2 & 5 \\ 3 & -2 \end{pmatrix}$$

$$Size of AB is 2x2$$

* If
$$(\# \text{ of columns of } A) \neq$$

 $(\# \text{ of rows of } B)$,
then AB is not defined, ex: $\binom{2}{0} \binom{2}{3} \binom{2}{2} \binom{2}{2} \binom{-1}{0} \binom{2}{3} \binom{-1}{2}$ is not defined
 $2 \times \binom{3}{2} \binom{2}{2} \times \binom{3}{7}$
not equal

• Identity matrices
* The identity n×n matrix is
$$I_n = I_{n \times n} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & 1 & & 0 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix}$$

 $E_{X}: I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
* Note : IF M is an n×n matrix. Then $M I_n = I_n M = M$

$$f(x) = \frac{1}{2} \int_{-1}^{1} \frac{1}{2} \int_{0}^{1} \frac{1}{2} \int_{0}^{2} \frac{$$

· Invertibility

An $n \times n$ matrix M is called <u>invertible</u> if there exists a matrix B such that MB = BM = In.

The matrix B is called the inverse of M and denoted B=M⁻¹ (fact: unique)

Note: Non-square matrices don't have inverses.

$$f_{X}: M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

$$MB = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1(-2) + 2(\frac{3}{2}) & 1(1) + 2(-\frac{1}{2}) \\ 3(-2) + 4(\frac{3}{2}) & 3(1) + 4(-\frac{1}{2}) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$Compute BM = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \stackrel{?}{=} \dots$$

$$S_{\circ} M \text{ is invertible and } M^{-1} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

B is invertible and B' = M

Thm

Let
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Then;

1) M is invertible iff
$$ad-bc \neq 0$$

Note : If $ad-bc \neq 0$ then M is invertible
If $ad-bc = 0$ then M is not invertible
2) If $ad-bc \neq 0$ then $M^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Definition

The determinant of a 2x2 matrix
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 is $det(M) = ad-bc$
 $E_X: M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ IM
 $det(M) = 1(4) - 2(3) = -2$ which is non zero, to M is invertible.
 $M^{-1} = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -3 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ \frac{3}{2} & -\frac{4}{2} \end{pmatrix}$
 $E_X: M = \begin{pmatrix} 1 & 2 \\ -3 & 6 \end{pmatrix}$
 $det(M) = 1(6) - 2(5) = 0$, so M is not invertible.
 $Definition$ Let M be an n×n matrix.
Invertible
A number λ^{-1} is an eigenvalue of M if there exists
a nonzero vector V such that $A V = \lambda V$.
Such nonzero vector V is called an eigenvector of M.
 $E_X: M = \begin{pmatrix} 1 & 4 \\ -3 & 6 \end{pmatrix}$
 $Qa: Is \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ an eigenvector of M?
Answer: $M \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/(2) + 4(0) \\ 1(2) + 1(1) \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \end{pmatrix} = \frac{3}{2} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
 $Yes, \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ is an eigenvector of M?
Answer: $M \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/(2) + 4(0) \\ 1(2) + 1(0) \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$
 $If M \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \lambda \begin{pmatrix} 2 \\ 0 \end{pmatrix}$, then $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$. $\lambda \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ so $2 = \lambda 2 \Rightarrow \lambda = 1$
 $2 = \lambda D \Rightarrow 2 = (1)0$, impossible
So, $no, \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is not an eigenvector of M.

How do we find all eigenvalues of a matrix? EX: Find all eigenvalues of $M = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$ Ans: *We want to find a number λ and a nonzero 2×1 vector ∇ such that $M = \lambda \gamma$.

$$\begin{array}{l} & \text{We can subtract} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \vee \quad \text{from both sides to get} \\ \begin{pmatrix} M - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \vee = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{aligned}$$

* Fact:
$$A = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 has a solution other than $v = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ iff $det(A) = 0$
Therefore λ is an eigenvalue and v is an eigenvector
iff $det(M - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) = 0$

* Set det
$$\left(\begin{bmatrix} 1-\lambda & 4-0\\ 1-0 & 1-\lambda \end{bmatrix} \right) = 0$$
 (You can go divectly to this step)
 $(1-\lambda)(1-\lambda) - (1)(4) = 0$

$$1-2\lambda + \lambda^{2} - 4 = 0$$

$$\lambda^{2} - 2\lambda - 3 = 0$$

$$(\lambda+1)(\lambda-3) = 0$$

$$\lambda = -1, \lambda = 3$$
 are the eigenvalues of $M = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$

* Find eigenvectors of $\lambda = -1$:

Solve
$$\left(M - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 for $\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$
 $\left(M - G(1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $\left(\begin{pmatrix} 1 + 1 & 4 \\ 1 & |+1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$\frac{2 \cdot v_{1} + 4 \cdot v_{2} = 0}{1 \cdot v_{1} + 2 \cdot v_{2} = 0}$$
Fact from linear algebra:
Because det $\left(M - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) = 0$, these two equations are equivalent.
If they are not, double check your computation
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} + v_{1} + v_{2} = 0$
 $v_{2} + v_{1} + v_{2} = 0$
 $v_{2} + v_{1} + v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} + v_{1} + v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$
 $v_{1} + 2 \cdot v_{2} = 0$
 $v_{2} = 0$