$$
\text { A little bit of linear algebra for } \sec 5.1,5.2
$$

- A matrix is a block of numbers, ex: $M=\left(\begin{array}{ccc}1 & -2 & 3 \\ 4 & 5 & \frac{1}{6}\end{array}\right)$
- The size of a matrix $M$ is $m \times n$ size of $M$ is $2 \times 3$ if $M$ has $m$ rows and $n$ columns
- Read rows from top to bottom Read columns from left to right

Row 1
Row 2 $\left(\begin{array}{ccc}1 & -2 & 3 \\ 4 & 5 & \frac{1}{6}\end{array}\right)$
$\left(\begin{array}{ccc}1 & -2 & 3 \\ 4 & 5 & \frac{1}{6}\end{array}\right)$
col 1 col 2 Col 3

- The $(i, j)$-th element of a matrix $M$ is the entry on the $i$-th row and $j$-th column of $M$

$$
\begin{aligned}
& M=\left(\begin{array}{ccc}
1 & -2 & 3 \\
4 & 5 & \frac{1}{6}
\end{array}\right) \text { of } M \text { is } 3 \\
& 4 \\
& (2,1) \text {-th element of } M \text { is } 4
\end{aligned}
$$

- Matrix addition / subtraction:
* If $A, B$ are matrices of the same size, $\quad A=\left(\begin{array}{lll}2 & 1 & 4 \\ 3 & 0 & 6\end{array}\right), B=\left(\begin{array}{ccc}-1 & 3 & -2 \\ 1 & -2 & 1\end{array}\right)$
then we add/ subtract the entries to get $A+B$ and $A-B$

$$
A+B=\left(\begin{array}{ccc}
2-1 & 1+3 & 4-2 \\
3+1 & -2 & 6+1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 4 & 2 \\
4 & -2 & 7
\end{array}\right)
$$

Note: $A+B=B+A$ (matrix addition
is commutative)

$$
A-B=\left(\begin{array}{ccc}
2--1 & 1-3 & 4--2 \\
3-1 & --2 & 6-1
\end{array}\right)=\left(\begin{array}{ccc}
3 & -2 & 6 \\
2 & 2 & 5
\end{array}\right)
$$

* If $A, B$ have different sizes, then $A+B$ and $A-B$ are not defined $\left(\begin{array}{cc}2 & 1 \\ -1 & 4\end{array}\right)+\left(\begin{array}{lll}3 & 1 & 4 \\ 2 & 6 & 8\end{array}\right)$ is not defined
- Scalar multiplication:

$$
\text { Ex: } \quad M=\left(\begin{array}{ccc}
1 & -2 & 3 \\
4 & 5 & \frac{1}{6}
\end{array}\right), \quad c=100
$$

If $M$ is a matrix and $c$ is a number, then $C M$ is the matrix obtained by

$$
C M=100\left(\begin{array}{ccc}
1 & -2 & 3 \\
4 & 5 & \frac{1}{6}
\end{array}\right)=\left(\begin{array}{ccc}
100 & -200 & 300 \\
400 & 500 & \frac{100}{6}
\end{array}\right)
$$

multiplying $c$ to every entry in $M$

- Matrix multiplication:
* Let $A$ be an $m \times n$ matrix and
let $B$ be an $n \times k$ matrix.

$$
\begin{array}{rlrl}
A= & \left(\begin{array}{lll}
2 & 1 & -1 \\
0 & 3 & 2
\end{array}\right), & B=\left(\begin{array}{cc}
1 & 2 \\
-1 & 0 \\
3 & -1
\end{array}\right) \\
& \text { size } 2 \times 3 & & \text { size } 3 \times 2
\end{array}
$$

Then $A B$ is an $m \times K$ matrix.

The (i,j)-th element of $A B$
is the "dot product" of
the i-th row of $A$ and
the $j$-th column of $B$

$$
\begin{aligned}
A B=\left(\begin{array}{lll}
2 & 1 & -1 \\
0 & 3 & 2
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right)\left(\begin{array}{ll}
2 \\
0 \\
-1
\end{array}\right) & =\left(\begin{array}{ll}
2(1)+1(-1)-1(3) & 2(2)+1(0)-1(-1) \\
0(1)+3(-1)+2(3) & 0(2)+3(0)+2(-1)
\end{array}\right) \\
& =\left(\begin{array}{cc}
-2 & 5 \\
3 & -2
\end{array}\right) \\
& \text { size of } A B \text { is } 2 \times 2
\end{aligned}
$$

* Note in general $A B \neq B A$, ex: (Matrix multiplication
is not commutative)

$$
B A=\left(\begin{array}{cc}
1 & 2 \\
-1 & 0 \\
3 & -1
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & -1 \\
0 & 3 & 2
\end{array}\right)=\left(\begin{array}{cc|c}
1(2)+2(0) & 1(1)+2(3) & 1(-1)+2(2) \\
3 \times 2 & 2 \times 3
\end{array} \left\lvert\, \begin{array}{ccc}
-1(2)+0(0) & -1(1)+0(3) & -1(-1)+0(2) \\
3(2)-1(0) & 3(1)-1(3) & 3(-1)-1(2)
\end{array}\right.\right)
$$

* If (\# of columns of $A) \neq$

$$
\text { (\# of rows of } B \text { ), }
$$

then $A B$ is not defined, ex: $\left(\begin{array}{ccc}2 & 1 & -1 \\ 0 & 3 & 2\end{array}\right)\left(\begin{array}{ccc}2 & 1 & -1 \\ 0 & 3 & 2\end{array}\right)$ is not defined

$$
\begin{gathered}
2 \times 3 \\
\uparrow \uparrow \\
\text { not equal }
\end{gathered}
$$

- Identity matrices
* The identity $n \times n$ matrix is $I_{n}=I_{n \times n}=\left(\begin{array}{ccccc}1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 1 & & 0 \\ \vdots & & \ddots & \vdots \\ \vdots & & \ddots & 0 & 1\end{array}\right)$

$$
\text { Ex: } I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

* Note: If $M$ is an $n \times n$ matrix, then $M I_{n}=I_{n} M=M$.
(So the identity matrix acts like the number 1.)

Ex: check $\quad\left(\begin{array}{cc}2 & 1 \\ -1 & 4\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \stackrel{?}{=} \ldots \quad\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}2 & 1 \\ -1 & 4\end{array}\right) \stackrel{?}{=} \ldots$

Invertibility
An $n \times n$ matrix $M$ is called invertible if there exists a matrix $B$ such that $M B=B M=I_{n}$.

The matrix $B$ is called the inverse of $M$ and denoted $B=M^{-1}$ (fact: unique)

Note: Non-square matrices don't have inverses.

$$
\text { Ex: } \quad M=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), \quad B=\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)
$$

$M B=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\left(\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right)=\left(\begin{array}{ll}1(-2)+2\left(\frac{3}{2}\right) & 1(1)+2\left(-\frac{1}{2}\right) \\ 3(-2)+4\left(\frac{3}{2}\right) & 3(1)+4\left(-\frac{1}{2}\right)\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
Compute $B M=\left(\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \stackrel{?}{=} \ldots$
So $M$ is invertible and $M^{-1}=\left(\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right)$

$$
B \text { is invertible and } B^{-1}=M
$$

Tho
Let $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then:
(1) $M$ is invertible iff $a d-b c \neq 0$

Note : If $a d-b c \neq 0$ then $M$ is invertible

$$
\text { If } a d-b c=0 \text { then } M \text { is not invertible }
$$

(2) If $a d-b c \neq 0$ then $M^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$

Definition
The determinant of a $2 \times 2$ matrix $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\underbrace{\operatorname{det}(M)}_{\text {or }}=a d-b c$

$$
\text { Ex: } M=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

$\operatorname{det}(M)=1(4)-2(3)=-2$ which is nonzero, so $M$ is invertible.

$$
\begin{aligned}
& M^{-1}=\frac{1}{-2}\left(\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right)=\left(\begin{array}{rr}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right) \\
& E X: M=\left(\begin{array}{cc}
1 & 2 \\
-3 & -6
\end{array}\right)
\end{aligned}
$$

$\operatorname{det}(M)=1(-6)-2(-3)=0$, so $M$ is not invertible.
Definition Let $M$ be an $n \times n$ matrix.
lambda
A number $\lambda^{\ell}$ is an eigenvalue of $M$ if there exists
a nonzero $\underbrace{\text { vector }}_{n \times 1 \text { matrix }} v$ such that $A v=\lambda v$.
Such nonzero vector $v$ is called an eigenvector of $M$.

$$
E x: \quad M=\left(\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right)
$$

Qa: Is $\binom{2}{1}$ an eigenvector of $M$ ?
Answer: $M\binom{2}{1}=\binom{1(2)+4(1)}{1(2)+1(1)}=\binom{6}{3}=3^{6}\binom{\lambda}{1}$
Yes, $\binom{2}{1}$ is an eigenvector of $M$. Its corresponding eigenvalue is $\lambda=3$
Qb: Is $\binom{1}{0}$ an eigenvector of $M$ ?
Answer: $M\binom{2}{0}=\binom{1(2)+4(0)}{1(2)+1(0)}=\binom{2}{2}$
If $M\binom{2}{0}=\lambda\binom{2}{0}$, then $\binom{2}{2}=\lambda\binom{2}{0}$ so

$$
\begin{aligned}
& 2=\lambda 2 \Rightarrow \lambda=1 \\
& 2=\lambda 0 \Rightarrow 2=(1) 0, \text { impossible }
\end{aligned}
$$

So, no, (l $\left.\begin{array}{l}1 \\ 0\end{array}\right)$ is not an eigenvector of $M$.

- How do we find all eigenvalues of a matrix?

Ex: Find all eigenvalues of $M=\left(\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right)$
Ans: *We want to find a number $\lambda$ and a nonzero $2 \times 1$ vector $v$ such that $M v=\lambda v$.

* We can subtract $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) v$ from both sides to get

$$
\left(M-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) v=\binom{0}{0}
$$

* Fact: $A v=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ has a solution other than $v=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ iff $\operatorname{det}(A)=0$ Therefore $\lambda$ is an eigenvalue and $v$ is an eigenvector iff $\operatorname{det}\left(M-\lambda\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)=0$
* Set $\operatorname{det}\left(\left[\begin{array}{cc}1-\lambda & 4-0 \\ 1-0 & 1-\lambda\end{array}\right]\right)=0 \quad$ (You can go directly to this step)

$$
\begin{aligned}
& (1-\lambda)(1-\lambda)-(1)(4)=0 \\
& 1-2 \lambda+\lambda^{2}-4=0 \\
& \lambda^{2}-2 \lambda-3=0 \\
& (\lambda+1)(\lambda-3)=0
\end{aligned}
$$

$\lambda=-1, \lambda=3$ are the eigenvalues of $M=\left(\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right)$

* Find eigenvectors of $\lambda=-1$ :

$$
\text { Solve } \begin{aligned}
\left(M-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \quad \text { for }\binom{v_{1}}{v_{2}} \\
\left(M-(-1)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array} 1\right)\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \\
\left(\begin{array}{cc}
1+1 & 4 \\
1 & 1+1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
\end{aligned}
$$

$$
\left.\begin{array}{l}
2 v_{1}+4 v_{2}=0 \\
1 v_{1}+2 v_{2}=0
\end{array}\right\}
$$

Fact from linear algebra:
Because $\operatorname{det}\left(M-\lambda\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)=0$, these two equations are equivalent.
If they are not, double check your computation


Any point/vector on this line is an eigenvector of $\lambda=-1$.
To find one eigenvector, just pick any point on this line (except the origin), egg. $v=\binom{-2}{1}$ or $\binom{1}{-\frac{1}{2}}$
Remark: Eigenvectors are not unique. In fact, if $v$ is an eigenvector of $\lambda$, then so is $c v$ for any nonzero number $c$.

* Find eigenvectors of $\lambda=3$ for $M=\left(\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right)$ :

Solve $(M-\lambda I) v=\binom{0}{0}$

$$
I:=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
1-3 & 4-0 \\
1-0 & 1-3
\end{array}\right) v=\binom{0}{0} \\
& \left(\begin{array}{cc}
-2 & 4 \\
1 & -2
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
\end{aligned}
$$

$\begin{aligned}-2 v_{1}+4 v_{2}=0 & \measuredangle \text { Both equations describe the same line } \\ v_{1}-2 v_{2}=0 & \ll\end{aligned}$
Take the point $v_{2}=1, v_{1}=2 v_{2}=2:\binom{2}{1}$ (or any point in this line except the origin)

Then $\binom{2}{1}$ is an eigenvector of $M$ associated to $\lambda=3$

