The eigenvalue method for homogeneous system part b

THEOREM 1 Eigenvalue Solutions of $\mathrm{x}^{\prime}=\mathrm{Ax}$

Let λ be an eigenvalue of the [constant] coefficient matrix \mathbf{A} of the first-order linear system

$$
\text { size } n \times n
$$

$$
>\quad \frac{d \mathbf{x}}{d t}=\mathbf{A} \mathbf{x}
$$

If \mathbf{v} is an eigenvector associated with λ, then
> entries

$$
\mathbf{x}(t)=\mathbf{v} e^{\lambda t}
$$

not all zeros
is a nontrivial solution of the system.

The Eigenvalue Method

Step 1: Find all eigenvalues of A.
We will consider only the case where the eigenvalues are all distinct.
Step 2: For each eigenvalue λ, find an eigenvector \vec{v}.
There are always infinitely many eigenvectors, but it's enough to pick one This gives us n "linearly independent" vectors.

Step 3: Each eigenvalue λ with eigenvector v contributes one term to the general solution of $x^{\prime}=A x$:

* Each real eigenvalue λ with eigenvector v contributes a term $c_{1} e^{\lambda t} v$
* Each complex conjugate pair $\lambda=p+q i$ and $\bar{\lambda}=p-q i$ with eigen vectors $v=\left[\begin{array}{c}a_{1}+b_{1} i \\ a_{2}+b_{2} i \\ \vdots \\ a_{n}+b_{n} i\end{array}\right]$ and $\bar{v}=\left[\begin{array}{c}a_{1}-b_{1} i \\ a_{2}-b_{2} i \\ \vdots \\ a_{n}-b_{n} i\end{array}\right]$, respectively, contributes two terms $c_{1} e^{\lambda t} v+c_{2} e^{\overline{\lambda t}} \bar{v}$

Remark: These are complex-valued functions.
we want the real-valued terms only
(For simplicity, 1 will demonstate this assuming A is 2×2.)

$$
\text { Let } v=\left[\begin{array}{l}
a+b_{i} \\
c+d_{i}
\end{array}\right] \text {, so } \bar{v}=\left[\begin{array}{l}
a-b_{i} \\
c-d_{i}
\end{array}\right]
$$

Recall:

$$
\text { Rewrite } \quad \int e^{(p+2 i) t}=e^{p t} e^{i q t}
$$

$$
e^{\lambda t} v=e^{(p+q i) t}\left(\left[\begin{array}{l}
a \\
c
\end{array}\right]+i\left[\begin{array}{l}
b \\
d
\end{array}\right]\right) \quad=e^{p t}(\cos (q t)+i \sin (q t))
$$

$$
=e^{p t}(\cos (q t)+i \sin (q t))\left(\left[\begin{array}{l}
a \\
c
\end{array}\right]+i\left[\begin{array}{l}
b \\
d
\end{array}\right]\right)
$$

$$
(\text { foil }=\underbrace{e^{p t}\left(\cos (q t)\left[\begin{array}{l}
a \\
c
\end{array}\right]-\sin (q t)\left[\begin{array}{l}
b \\
d
\end{array}\right]\right.}_{\text {real part }})+\underbrace{e^{p t} i\left(\cos (q t)\left[\begin{array}{l}
b \\
d
\end{array}\right]+\sin (q t)\left[\begin{array}{l}
a \\
c
\end{array}\right]\right)}_{\text {imaginary part }}
$$

We get two linearly independent real-valued solutions:

$$
e^{p t}\left(\cos (q t)\left[\begin{array}{l}
a \\
c
\end{array}\right]-\sin (q t)\left[\begin{array}{l}
b \\
d
\end{array}\right]\right) \text { and } e^{p t}\left(\cos (q t)\left[\begin{array}{l}
b \\
d
\end{array}\right]+\sin (q t)\left[\begin{array}{l}
a \\
c
\end{array}\right]\right)
$$

Rem: You can use either eigenvalue $p+q^{i}$ or $p-q^{i}$.

Ex: \quad Find a general solution of the system

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=4 x_{1}-3 x_{2} \\
& \frac{d x_{2}}{d t}=3 x_{1}+4 x_{2}
\end{aligned}
$$

Ans: The matrix form of this system is $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\underbrace{\left[\begin{array}{cc}4 & -3 \\ 3 & 4\end{array}\right]}_{A^{\prime}}\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
(Step 1) Previously we computed that the eigenvalues of A are $4-3 i$ and $4+3 i$
(step 2) Previously we found an eigenvector of 4-3i which is $\left[\begin{array}{l}1 \\ i\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]+i\left[\begin{array}{l}0 \\ 1\end{array}\right]$
Extra info (and an eigenvector of $4+3 i$ which is $\left[\begin{array}{l}1 \\ 0\end{array}\right]+i\left[\begin{array}{c}0 \\ -1\end{array}\right]$)
that we need need
(and
(Step 3) We get two real-valued linearly independent solutions

$$
e^{4 t}\left(\cos (-3 t)\left[\begin{array}{l}
1 \\
0
\end{array}\right]-\sin (-3 t)\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \text { and } e^{4 t}\left(\cos (-3 t)\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\sin (-3 t)\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

A real-valued general solution is
Recall: $\cos (-x)=\cos (x)$ and $\sin (-x)=-\sin (x)$ $\cos (-3 t)=\cos (3 t), \quad-\sin (-3 t)=\sin (3 t)$

$$
\begin{aligned}
\vec{x}(t) & =c_{1} e^{4 t}\left(\cos (3 t)\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\sin (3 t)\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)+c_{2} e^{4 t}\left(\cos (3 t)\left[\begin{array}{l}
0 \\
1
\end{array}\right]-\sin (3 t)\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \\
& =c_{1} e^{4 t}\left[\begin{array}{l}
\cos (3 t) \\
\sin (3 t)
\end{array}\right]+c_{2} e^{4 t}\left[\begin{array}{c}
-\sin (3 t) \\
\cos (3 t)
\end{array}\right] \\
& =\left[\begin{array}{l}
c_{1} e^{4 t} \cos (3 t)-c_{2} e^{4 t} \sin (3 t) \\
c_{1} e^{4 t} \sin (3 t)+c_{2} e^{4 t} \cos (3 t)
\end{array}\right] \quad \text { for } c_{1}, c_{2} \in \mathbb{R}
\end{aligned}
$$

(in matrix form)
You can also write

$$
\begin{aligned}
& x_{1}(t)=e^{4 t}\left(c_{1} \cos 3 t-c_{2} \sin 3 t\right), \\
& x_{2}(t)=e^{4 t}\left(c_{1} \sin 3 t+c_{2} \cos 3 t\right),
\end{aligned} \quad \text { for } \quad c_{1}, c_{2} \in \mathbb{R}
$$

Ex: Find the (unique) solution to the IVP

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=4 x_{1}-3 x_{2} \\
& \frac{d x_{2}}{d t}=3 x_{1}+4 x_{2}
\end{aligned}
$$

$$
\left[\begin{array}{l}
{\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad
$$

Ans We computed a general solution to the system $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\left[\begin{array}{cc}4 & -3 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$:

$$
\begin{aligned}
& x_{1}(t)=e^{4 t}\left(c_{1} \cos 3 t-c_{2} \sin 3 t\right), \\
& x_{2}(t)=e^{4 t}\left(c_{1} \sin 3 t+c_{2} \cos 3 t\right),
\end{aligned} \quad \text { for } \quad c_{1}, c_{2} \in \mathbb{R}
$$

Impose the initial conditions:

$$
\left.\begin{array}{l}
1=x_{1}(0)=e^{0}\left(c_{1} \cos (0)-c_{2} \sin (0)\right) \\
0=x_{2}(0)=e^{0}\left(c_{1} \sin (0)+c_{2} \cos (0)\right)
\end{array}\right\} \Rightarrow \begin{aligned}
& 1=c_{1} \\
& 0=c_{2}
\end{aligned}
$$

The solution to the IVP is

$$
\begin{aligned}
& x_{1}(t)=e^{4 t} \cos (3 t) \\
& x_{2}(t)=e^{4 t} \sin (3 t)
\end{aligned}
$$

