Sec 5.2 part a: Eigenvalues and eigenvectors, revisited

- Definition

A number λ^{\diamond} is an eigenvalue of M if there exists
a nonzero $\underbrace{\text { vector }}_{n \times 1 \text { matrix }} v$ such that $A v=\lambda v$.
Such nonzero vector v is called an eigenvector of M.

- Method for finding all eigenvalues of a matrix M :

Write down the characteristic equation of M

$$
\operatorname{det}(M-\lambda I)=0
$$

The roots (real or non-real complex) are the eigenvalues of M.

- Method for finding all eigenvalues of a 2×2 matrix $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

The characteristic equation of M is
$a, b, c, d \in \mathbb{R}$

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right)=0 \\
& \left|\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right|=0 \\
& (a-\lambda)(d-\lambda)-b c=0
\end{aligned}
$$

The roots of this characteristic equation are the eigenvalues of M. There are 3 possible cases:

1. The characteristic equation has two distinct real eigenvalues
2. The characteristic equation has a pair of complex conjugate

$$
\text { eigenvalues } \lambda=p+q i \text { and } \bar{\lambda}=p-q_{i}
$$

3. The characteristic equation has one real root with multiplicity 2 .

Example: Find all eigenvalues of the matrix $M=\left[\begin{array}{cc}4 & -3 \\ 3 & 4\end{array}\right]$
Answer: The characteristic equation of M is

$$
\begin{aligned}
& \operatorname{det}\left(M-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0 \\
& {\left[\left.\begin{array}{cc}
4-\lambda & -3 \\
3 & 4-\lambda
\end{array} \right\rvert\,=0\right.} \\
& (4-\lambda)^{2}-3(-3)=0 \\
& (4-\lambda)^{2}+9=0 \\
& (4-\lambda)^{2}=-9 \\
& 4-\lambda= \pm 3 i \\
& \lambda=4 \pm 3 i \text { are the roots of the characteristic equation of } M \\
& \text { So } M \text { has two eigenvalues } \lambda_{1}=4-3 i \text { and } \lambda_{2}=4+3 i .
\end{aligned}
$$

Example: Find at least one eigenvector for each of the eigenvalues of the matrix $M=\left[\begin{array}{cc}4 & -3 \\ 3 & 4\end{array}\right]$.

Answer: T_{0} find one eigenvector for $\lambda_{1}=4-3 i$, we need to find $\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ which satisfies

$$
\left(M-\lambda_{1}\left[\begin{array}{c}
1 \\
0 \\
0
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]:
$$

$$
\left(\begin{array}{cl}
4-(4-3 i) & -3 \\
3 & 4-(4-3 i)
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

$$
\left(\begin{array}{cc}
3 i & -3 \\
3 & 3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& \text { You can } \\
& \text { to the last step }
\end{aligned}
$$

$$
\left[\begin{array}{c}
3 i v_{1}-3 v_{2} \\
3 v_{1}+3 i v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
3 i v_{1}-3 v_{2}=0
$$

$$
3 v_{1}+3 i v_{2}=0
$$

(Optional sanity check: the two equations should be equivalent if not, your λ_{1} is not an eigenvalue or your arithmetic is wrong.

Yes, the two equations are equivalent.
Multiply the top equation by $-i$ to get the bottom equation: $(-i)\left(3 i v_{1}-3 v_{2}\right)=(-i) 0$
$-i^{2} 3 v_{1}+3 i v_{2}=0$

$$
3 v_{1}+3 i v_{2}=0
$$

The equations tell us that $v_{2}=i v_{1}$.
Pick any nonzero number for v_{1}, eng set $v_{1}=1$, then $v_{2}=i$ So an eigenvector for $\lambda_{1}=4-3 i$ is $\binom{1}{i}$.

Other eigenvectors for $\lambda_{1}=4-3 i$ are $\binom{i}{-1},\binom{2}{2 i},\binom{6+3 i}{6 i-3}$.

Fact: If a 2×2 matrix has a pair of complex conjugate eigenvalues $p+q i$ and $p-q i$,
you only need to find eigenvectors for one of the eigenvalues the eigenvectors for the other eigenvalue are obtained by conjugation. If $v=\left[\begin{array}{l}a+b i \\ c+d i\end{array}\right]$ is an eigenvector for eigenvalue $\lambda=p+q i$, then $\bar{v}=\left[\begin{array}{l}a-b i \\ c-d i\end{array}\right]$ is an eigenvector for $\bar{\lambda}=p-q i$.

So an eigenvector for $\lambda_{2}=4+3 i$ is $\binom{1}{-i}$. $\begin{gathered}\text { In class we } \\ \text { computed } \\ \text { this directly }\end{gathered}$

The eigenvalue method for homogeneous system part a
Tho (Eigenvalue solutions of $x^{\prime}=A x$)
Consider the 1st-order linear system of ODEs

$$
\vec{x}^{\prime}(t)=\underbrace{A}_{\begin{array}{c}
\text { matrix } \\
\text { wo r constant } \\
\text { coefficients }
\end{array}} \vec{x}(t) \quad \text { or } \quad \frac{d}{d t} \vec{x}(t)=A \vec{x}(t)) \text {. }
$$

If λ is an eigenvalue of A and \vec{v} is an eigenvector of A associated with λ, then $\vec{x}(t)=\vec{v} e^{\lambda t}$ is a solution of the system.

Explanation: Consider our previous running example, a homogeneous linear system $\vec{x}^{\prime}(t)=\left[\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right] \vec{x}(t)$ we expect a solution of the form $\vec{x}(t)=e^{r t} v$

Guess a solution $\vec{x}(t)=e^{r t}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$

$$
\bar{x}^{\prime}(t)=r e^{r t}\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

Substitute $\vec{x}(t)$ and $\vec{x}^{\prime}(t)$ into the system of $O D E_{s}$

$$
\begin{aligned}
r e^{r t}\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right] e^{r t}\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \\
r\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
\end{aligned}
$$

To find r and $\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ is the same as finding an eigenvector v of $\left[\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right]$ and an eigenvalue corresponding to v.

Example: Find a general solution of the system

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+4 x_{2} \\
& x_{2}^{\prime}=x_{1}+x_{2}
\end{aligned}
$$

Answer: The matrix form of the system is

$$
\vec{x}^{\prime}=\left[\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right] \vec{x}
$$

Earlier, we computed that the matrix $\left[\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right]$ has two distinct eigenvalues
$[-2]^{\text {among infinitely }}$
-1 with an eigenvector $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$ many choices
3 with an eigenvector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$: among many

* So $\vec{x}(t)=e^{-t}\left[\begin{array}{r}-2 \\ 1\end{array}\right]$ is a solution of $\vec{x}^{\prime}(t)=\left[\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right] \vec{x}(t)$,
and $\vec{x}(t)=e^{3 t}\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is also a solution of $\vec{x}^{\prime}(t)=\left[\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right] \vec{x}(t)$.
* The general solution of $\vec{x}^{\prime}(t)=\left[\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right] \bar{x}(t)$ is a linear combination of two linearly independent solutions,

$$
\vec{x}(t)=C_{1} e^{-t}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+C_{2} e^{3 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right] \text { for } C_{1}, C_{2} \in \mathbb{R}
$$

