5.1 Matrices and linear systems

- A matrix-valued function (or simply matrix function)
is a matrix whose entries are functions of t.

$$
E x: \quad \vec{x}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right], \quad \vec{A}(t)=\left[\begin{array}{lll}
a_{11}(t) & a_{12}(t) & a_{13}(t) \\
a_{21}(t) & a_{22}(t) & a_{23}(t)
\end{array}\right]=\left(a_{i j}(t)\right)_{1 \leqslant i \leqslant 2,}, 1 \leqslant j \leqslant 3
$$

- A matrix function is continuous at a point (or an interval) if each of its entries is.
- A matrix function is differentiable at a point (or an interval) if each of its entries is.

$$
\text { Ex: } \vec{x}(t)=\left(\begin{array}{c}
e^{t} \\
e^{2 t} \\
7
\end{array}\right)
$$

$\vec{x}(t)$ is continuous and differentiable on \mathbb{R}

$$
\bar{A}(t)=\left[\begin{array}{cc}
0 & \sin (t) \\
\cos (t) & \tan (2 t)
\end{array}\right]
$$

$\bar{A}(t)$ is continuous and differentiable on $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$

- The derivative of a differentiable matrix function $A(t)=\left(a_{i j}(t)\right)$ is $A^{\prime}(t)=\left(\frac{d}{d t} a_{i j}(t)\right) \quad$ (differentiate each entry)

Ex: $\quad \bar{x}^{\prime}(t)=\left(\begin{array}{c}e^{t} \\ 2 e^{2 t} \\ 0\end{array}\right)$

$$
A^{\prime}(t)=\left(\begin{array}{cc}
0 & \cos (t) \\
-\sin (t) & \frac{2}{\cos ^{2}(t)}
\end{array}\right)
$$

```
1st-order linear systems
```

- A system of 1st-order ODEs is linear if it can be written as

$E_{x}:\left[\begin{array}{l}x^{\prime}(t) \\ y^{\prime}(t)\end{array}\right) \stackrel{(*)}{=}\left[\begin{array}{cc}\sin (t) & t^{2} \\ 0 & \cos (t)\end{array}\right]\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]+\underbrace{\left[\begin{array}{c}\cos (t) \\ e^{t}\end{array}\right]}_{P(t)}$
Here $P(t)=\left[\begin{array}{cc}\sin (t) & t^{2} \\ 0 & \cos (t)\end{array}\right]$ and $f(t)=\left[\begin{array}{c}\cos (t) \\ e^{t}\end{array}\right]$

The equation (*) is equivalent to the system of two equations

$$
\left\{\begin{array}{l}
x^{\prime}(t)=\sin (t) x(t)+t^{2} y(t)+\cos (t) \\
y^{\prime}(t)=0 x(t)+\cos (t) y(t)+e^{t}
\end{array}\right.
$$

Ex : The 1st-order system
$\left\{\begin{array}{l}x_{1}^{\prime}=4 x_{1}-3 x_{2} \\ x_{2}^{\prime}=6 x_{1}-7 x_{2}\end{array}\right.$
can be written in matrix form as

$$
\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left(\begin{array}{ll}
4 & -3 \\
6 & -7
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

Def:
A solution of the ist-order linear system

$$
\vec{x}^{\prime}(t)=\overbrace{\text { vectors of height }}^{n \times n} \stackrel{n}{x}(t)+\vec{f}_{r}(t)
$$

is a family of n functions $x_{1}(t), x_{2}(t), \ldots, x_{n}(t)$ that satisfy the equality

$$
\left(\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right)=P(t)\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right)+\vec{f}(t)
$$

Ex of Def:

Is $\bar{x}_{a}(t)=\left(\begin{array}{l}3 e^{2 t} \\ 2 e^{2 t}\end{array}\right]$ a solution to the system $\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left(\begin{array}{ll}4 & -3 \\ 6 & -7\end{array}\right)\binom{x_{1}}{x_{2}}$ Is $\vec{x}_{b}(t)=\binom{e^{-5 t}}{3 e^{-5 t}}$ a solution?

Answer: Compute $\vec{X}_{a}^{\prime}(t)=\left(\begin{array}{ll}6 & e^{2 t} \\ 4 & e^{2 t}\end{array}\right)$.
Substitute both $\vec{x}_{a}(t)$ and $\vec{x}_{a}^{\prime}(t)$ into the system:

$$
\begin{aligned}
& L H S=\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left(\begin{array}{ll}
6 & e^{2 t} \\
4 & e^{2 t}
\end{array}\right) \\
& \text { RHS }=\left[\begin{array}{ll}
4 & -3 \\
6 & -7
\end{array}\right]\left[\begin{array}{l}
3 e^{2 t} \\
2 e^{2 t}
\end{array}\right]=\left[\begin{array}{l}
(12-6) e^{2 t} \\
(18-14) e^{2 t}
\end{array}\right]=\left[\begin{array}{c}
6 e^{2 t} \\
4 e^{2 t}
\end{array}\right]
\end{aligned}
$$

Since $L H S=$ RHS, $\vec{X}_{a}^{\prime}(t)$ is a solution of the system

Homework: Verify that $\bar{x}_{b}(t)$ is also a solution of the system.

Remark: Every n-th or der linear equation is equivalent to a 1 ist-order linear system of n equations in n variables.

Ex of Remark:
Convert the 2 nd-order linear equation

$$
y^{\prime \prime}+2 y^{\prime}+3 y=\sin (t)
$$

into a 1st-order linear system.
Ans: Let $u=y(t)$

$$
V=y^{\prime}(t)
$$

Then $u^{\prime}=y^{\prime}(t)=v$

$$
\begin{aligned}
v^{\prime}=y^{\prime \prime} & =\sin (t)-2 y^{\prime}-3 y \\
& =\sin (t)-2 v-3 u
\end{aligned}
$$

$$
\text { or }\left(\begin{array}{l}
\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}=-3 u-2 v+\sin (t) \\
\binom{u^{\prime}}{v^{\prime}}=\left(\begin{array}{cc}
0 & 1 \\
-3 & -2
\end{array}\right)\binom{u}{v}+\binom{0}{\sin (t)}
\end{array}\right.
$$

is the 1st-order system equivalent to the original 1st-order $O D E$.

Tho (Existence and uniqueness of solutions of 1st-order linear systems)
Consider

$$
\left(\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right)=P(t)\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right)+\left(\begin{array}{c}
f_{1}(t) \\
f_{2}(t) \\
\vdots \\
f_{n}(t)
\end{array}\right)
$$

Suppose each function in $P(t)$ and $f_{1}(t), f_{2}(t), \ldots, f_{n}(t)$ are Continuous in an open interval I containing the point a
Then, given numbers $b_{1}, b_{2}, \ldots, b_{n} \in \mathbb{R}$, the system has a unique solution on I that satisfies the initial conditions

$$
x_{1}(a)=b_{1}, x_{2}(a)=b_{2}, \ldots, x_{n}(a)=b_{n} .
$$

Def: Consider the 1st-order linear system

$$
\vec{x}^{\prime}(t)=P(t) \vec{x}(t)+\vec{f}(t)
$$

The associated homogeneous system is

$$
\vec{x}^{\prime}(t)=p(t) \vec{x}(t)
$$

Tho (Principle of superposition for homogeneous system) IF $\vec{x}_{a}(t)$ and $\vec{x}_{b}(t)$ are both solutions in I of the homogeneous linear system $\vec{x}^{\prime}(t)=P(t) \vec{x}(t)$,

THEN
any linear combination

$$
\vec{x}(t)=c_{1} \bar{x}_{a}(t)+c_{2} \bar{x}_{b}(t), \text { for } c_{1}, c_{2} \in \mathbb{R}
$$ is also a solution of $\vec{x}^{\prime}(t)=P(t) \vec{x}(t)$ on I.

Ex of Tho:

From the previous $e x$, we see that $\vec{x}_{a}(t)=\left[\begin{array}{l}3 e^{2 t} \\ 2 e^{2 t}\end{array}\right]$ and $\vec{x}_{b}(t)=\binom{e^{-5 t}}{3 e^{-5 t}}$ are both solutions of the homogeneous system $\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left(\begin{array}{cc}4 & -3 \\ 6 & -7\end{array}\right)\binom{x_{1}}{x_{2}}$ in \mathbb{R}.

So the tho (principle of superposition) tells us that

$$
c_{1} \vec{x}_{a}(t)+c_{2} \vec{x}_{b}(t)=\binom{3 c_{1} e^{2 t}+c_{2} e^{-5 t}}{2 c_{1} e^{2 t}+3 c_{2} e^{-5 t}}, \text { for any } c_{1}, c_{2}
$$

is also a solution in \mathbb{R}
Note: In this example, $I=\mathbb{R}$

Def: Two vector-valued functions $\vec{x}_{a}(t)$ and $\vec{x}_{b}(t)$ are linearly dependent on the interval I if there exists a nonzero constant c such that $c \vec{x}_{a}(t)=\vec{x}_{b}(t) \quad$ OR $\quad \vec{x}_{a}(t)=c \vec{x}_{b}(t)$. Otherwise, $\vec{x}_{a}(t)$ and $\vec{x}_{b}(t)$ are linearly dependent.

Ex: $\quad \vec{x}_{a}=\left[\begin{array}{c}3 e^{t} \\ e^{t}\end{array}\right]$ and $\vec{x}_{b}=\left[\begin{array}{l}-6 e^{t} \\ -2 e^{t}\end{array}\right]$ are linearly dependent because $-2 \vec{x}_{a}=\vec{x}_{b}$

Ex: $\quad \vec{x}_{a}(t)=\left[\begin{array}{l}3 e^{2 t} \\ 2 e^{2 t}\end{array}\right]$ and $\vec{x}_{b}(t)=\binom{e^{-5 t}}{3 e^{-5 t}}$ are linearly independent.

Def: The Wronskian of $\vec{x}_{a}(t)=\left[\begin{array}{l}x_{1 a}(t) \\ x_{2 a}(t)\end{array}\right]$ and $\vec{x}_{b}(t)=\left[\begin{array}{l}x_{1 b}(t) \\ x_{2 b}(t)\end{array}\right]$
is $W\left(\vec{x}_{a}(t), \vec{x}_{b}(t)\right)=\operatorname{det}\left(\left[\begin{array}{ll}x_{1 a}(t) & x_{1 b}(t) \\ x_{2 a}(t) & x_{2 b}(t)\end{array}\right]\right)$
For short, write

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|:=\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)
$$

this column this column is $\vec{x}_{a}(t)$ is $\vec{x}_{b}(t)$

$$
=x_{1 a}(t) x_{2 b}(t)-x_{2 a}(t) x_{1 b}(t)
$$

Thu (Wronskian \& linear independence):
If $W(\vec{u}(t), \vec{v}(t))$ is not the zero function, then $\vec{u}(t)$ and $\vec{v}(t)$ are linearly independent.

Ex of Thy:

$$
\begin{aligned}
& \bar{x}_{a}(t)=\left[\begin{array}{l}
3 e^{2 t} \\
2 e^{2 t}
\end{array}\right] \text { and } \vec{x}_{b}(t)=\binom{e^{-5 t}}{3 e^{-5 t}} \\
& \begin{aligned}
w\left(\bar{x}_{a}, \bar{x}_{b}\right)=\left|\begin{array}{ll}
3 e^{2 t} & e^{-5 t} \\
2 e^{2 t} & 3 e^{-5 t}
\end{array}\right| & =9 e^{2 t} e^{-5 t}-2 e^{2 t} e^{-5 t} \\
& =9 e^{-3 t}-2 e^{-3 t} \\
& =7 e^{-3 t}
\end{aligned}
\end{aligned}
$$

This is not the zero function (e.g. the value at $t=0$ is $7 \neq 0$), so the the (Wronskian \& linear independence) tells us that $\vec{x}_{a}(t)$ and $\vec{x}_{b}(t)$ are linearly independent.

Thm (General solutions of homogeneous systems)
Suppose $\vec{x}_{1}(t), \vec{x}_{2}(t), \ldots, \vec{x}_{n}(t)$ are linearly independent solutions (on an open interval I)
of the homogeneous first-order linear system with n equations in n variables

$$
\vec{x}^{\prime}(t)=P(t) \vec{x}(t) \quad \text { *) }
$$

Suppose $P(t)$ is continuous on I.
Then any solution $\bar{x}(t)$ of the system (*) can be written as $\bar{x}(t)=C_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+\ldots+C_{n} \vec{x}_{n}(t)$ for some $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{R}$ for all t in I.
(This means, to find a general solution, we only have to find n linearly independent solutions.)

Ex of Tho:
From the previous $e x$, we see that $\bar{x}_{a}(t)=\left(\begin{array}{l}3 e^{2 t} \\ 2 e^{2 t}\end{array}\right]$ and $\vec{x}_{b}(t)=\binom{e^{-5 t}}{3 e^{-5 t}}$ are linearly independent solutions of the homogeneous system $\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left(\begin{array}{ll}4 & -3 \\ 6 & -7\end{array}\right)\binom{x_{1}}{x_{2}}$ in \mathbb{R}.
By Thm (General solutions of homogeneous systems), since $P(t)=\binom{4 x_{1}-3 x_{2}}{6 x_{1}-7 x_{2}} \quad 2$ equations in 2 variables
a general solution of the system is

$$
\vec{x}(t)=c_{1}\binom{3 e^{2 t}}{2 e^{2 t}}+c_{2}\binom{e^{-5 t}}{3 e^{-5 t}}=\binom{c_{1} 3 e^{2 t}+c_{2} e^{-5 t}}{c_{1} 2 e^{2 t}+c_{2} 3 e^{-5 t}} \quad \text { for } c_{1}, c_{2} \in \mathbb{R} .
$$

> The (General solution of nonhomogeneous systems)
> Let $\vec{x}^{\prime}(t)=P(t) \vec{x}(t)+\underset{\psi}{\vec{f}}(t)$ be a non homogeneous not all O s
> 1st-order linear system of n equations in n variables.

Then its general solution is

Ex of Thm (General solution of nonhomogeneous systems)
Example 9 The nonhomogeneous linear system

$$
\begin{aligned}
& x_{1}^{\prime}=3 x_{1}-2 x_{2} \quad-9 t+13, \\
& x_{2}^{\prime}=-x_{1}+3 x_{2}-2 x_{3}+7 t-15, \\
& x_{3}^{\prime}=\quad-x_{2}+3 x_{3}-6 t+7
\end{aligned}
$$

is of the form in $\frac{d \mathbf{x}}{d t}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)$., with

$$
\mathbf{P}(t)=\left[\begin{array}{rrr}
3 & -2 & 0 \\
-1 & 3 & -2 \\
0 & -1 & 3
\end{array}\right], \quad \mathbf{f}(t)=\left[\begin{array}{r}
-9 t+13 \\
7 t-15 \\
-6 t+7
\end{array}\right]
$$

A general solution of the associated homogeneous linear system

$$
\frac{d \mathbf{x}}{d t}=\left[\begin{array}{rrr}
3 & -2 & 0 \\
-1 & 3 & -2 \\
0 & -1 & 3
\end{array}\right] \mathbf{x}
$$

is given by

$$
\mathbf{x}_{c}(t)=\left[\begin{array}{cr}
2 c_{1} e^{t}+2 c_{2} e^{3 t}+2 c_{3} e^{5 t} \\
2 c_{1} e^{t} & -2 c_{3} e^{5 t} \\
c_{1} e^{t}-c_{2} e^{3 t}+c_{3} e^{5 t}
\end{array}\right]
$$

and we can verify by substitution that the function

$$
\mathbf{x}_{p}(t)=\left[\begin{array}{r}
3 t \\
5 \\
2 t
\end{array}\right]
$$

(found using a computer algebra system, or perhaps by a human being using a method discussed in Section 5.7) is a particular solution of the original nonhomogeneous system. Consequently, Theorem 4 implies that a general solution of the nonhomogeneous system is given by $($ textbook $)$

$$
\mathbf{x}(t)=\mathbf{x}_{c}(t)+\mathbf{x}_{p}(t)
$$

that is, by

$$
\begin{aligned}
& x_{1}(t)=2 c_{1} e^{t}+2 c_{2} e^{3 t}+2 c_{3} e^{5 t}+3 t \\
& x_{2}(t)=2 c_{1} e^{t}-2 c_{3} e^{5 t}+5 \\
& x_{3}(t)=c_{1} e^{t}-c_{2} e^{3 t}+c_{3} e^{5 t}+2 t
\end{aligned}
$$

Initial value problems

Ex:
Solve the initial value problem (IVP)

$$
\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
4 & -3 \\
6 & -7
\end{array}\right)\binom{x_{1}}{x_{2}}, \quad \vec{x}(0)=\left[\begin{array}{l}
\vec{x}_{1}(0) \\
\vec{x}_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

Answer:
Previously, we said that
a general solution of the system is

$$
\binom{\vec{x}_{1}(t)}{\vec{x}_{2}(t)}=c_{1}\binom{3 e^{2 t}}{2 e^{2 t}}+c_{2}\binom{e^{-5 t}}{3 e^{-5 t}}=\binom{c_{1} 3 e^{2 t}+c_{2} e^{-5 t}}{c_{1} 2 e^{2 t}+c_{2} 3 e^{-5 t}} \text { for } c_{1}, c_{2} \in \mathbb{R}
$$

Impose the initial condition (to the general solution):

$$
\binom{0}{2}=\binom{\vec{x}_{1}(0)}{\vec{x}_{2}(0)}=\binom{c_{1} 3 e^{0}+c_{2} e^{0}}{c_{1} 2 e^{0}+c_{2} 3 e^{0}}
$$

So

$$
\left.\begin{array}{rl}
c_{1} 3+ \\
c_{12}+c_{2}=0 \\
c_{1}
\end{array}\right\} \Rightarrow c_{23}=2, \begin{aligned}
& c_{2}=-3 c_{1} \\
& \\
& \\
& c_{1} 2+\left(-3 c_{1}\right) 3=2 \\
& \\
& \\
& \\
& \\
& \\
& \\
& c_{1}(2-9)=-\frac{2}{7}
\end{aligned} \quad c_{2}=\frac{6}{7}
$$

The solution to the IVP is

$$
\left.\begin{array}{l}
\vec{x}_{1}(t)=-\frac{2}{7} 3 e^{2 t}+\frac{6}{7} e^{-5 t} \\
\vec{x}_{2}(t)=-\frac{2}{7} 2 e^{2 t}+\frac{6}{7} 3 e^{-5 t}
\end{array}\right\} \text { or } \quad \vec{x}(t)=-\frac{2}{7}\binom{3 e^{2 t}}{2 e^{2 t}}+\frac{6}{7}\binom{e^{-5 t}}{3 e^{-5 t}}
$$

