Sec 3.5 Non homogeneous linear equation with constant coefficients

Consider a nonhomogeneous linear ODE with constant coefficients

$$a_n y^{(n)} + ... + a_2 y'' + a_1 y' + a_0 y = f(x)$$
 [N]

where $a_n, \ldots, a_2, a_1, a_0 \in \mathbb{R}$ are constants and $a_n \neq 0$.

Then

$$a_n y^{(n)} + ... + a_2 y'' + a_1 y' + a_0 y = 0$$
 [H]

is the corresponding homogeneous ODE.

Ex 1 Find a general solution of
$$y'' - 5y' + 6y = 2xe^{3x}$$
 [N]
for

Step 1 Find a general solution of the homogeneous ODE
$$y'' - 5y' + 6y = 0$$
 [H]

(From Sec 3.3) A general solution of [H] is

$$y_{C}(x) = C_{1}e^{2x} + C_{2}e^{3x} , \quad C_{1}, C_{2} \in IR$$

Step 2 The nonhomogeneous part of [N] is $f(x) = e^{3x} 2x$ Like when we have a root 3 a polynomial of for the characteristic equation degree 1 Idea: Guess a particular solution yp(x) similar to for Should we guess $y_p(x) = e^{3x} (Ax + B)$ 2 Nol same form a polynomial of degree 1 Problem: we would get a term e^{3x} B which is already part of $y_c(x) = C_1 e^{2x} + C_2 e^{3x}$. Make Yp (x) "different enough" by multiplying by x" Fix: because r=3 is root of multiplicity 1 Guess $y_{p}(x) = e^{3x} X (Ax+B) = e^{3x} (Ax^{2}+Bx)$ of the clean of the characteristic

Step 3 Compute as many derivatives as we need to substitute into [N]:

$$y_{p}(x) = e^{3x} (Ax^{2} + Bx)$$

$$y_{p}^{1}(x) = 3e^{3x} (Ax^{2} + Bx) + e^{3x} (2Ax + B) = e^{3x} [3Ax^{2} + (3B + 2A)x + B]$$

$$y_{p}^{"}(x) = 3e^{3x} [3Ax^{2} + (3B + 2A)x + B] + e^{3x} [6Ax + (3B + 2A)]$$

$$= e^{3x} [9Ax^{2} + (9B + 12A)x + 6B + 2A]$$

Step 4 Substitute into the nonhomogeneous ODE [N]:

$$y'' - 5y' + 6y = 2x e^{3x}$$

 $e^{3x} [9A x^2 + (9B + 12A) x + 6B + 2A]$
 $- 5 e^{3x} [3A x^2 + (3B + 2A) x + B] + 6 e^{3x} (A x^2 + Bx) = 2x e^{3x}$
 $e^{3x} [(9A - 15A + 6A) x^2 + (9B + 12A - 15B - 10A + 6B) x + (6B + 2A - 5B) = 2x e^{3x}$
 $e^{3x} [0 x^2 + 2A x + B + 2A] = 2x e^{3x}$

Step 5 Solve for the coefficients A, B so that LHS and RHS are equal

$$2A \times +B + 2A = 2 \times +0$$

$$2A = 2 \implies A = 1$$

$$B + 2A = 0 \qquad B + 2(1) = 0 \implies B = -2$$

Step 6 Then a particular solution is $y_p(x) = e^{3x} (1x^2 - 2x)$ General solution of the nonhomogeneous ODE [N] is $y(x) = y_c(x) + y_p(x)$ $y(x) = C_1 e^{2x} + C_2 e^{3x} + e^{3x} (x^2 - 2x), \quad C_1, C_2 \in \mathbb{R}$ Step 1 Find general solution of the homogeneous ODE $y''' - y'' + y' - y = 0 \qquad [H]$ using Sec 3.3 method Characteristic equation is $r^{3} - r^{2} + r - 1 = 0 \qquad [C]$ $(r-1)(r^{2} + 1) = 0$ $r = 0 \pm i \text{ are conjugate}$ $r = 1 \text{ is a root} \qquad roots, each with$ wultiplicity 1 multiplicity 1 A general solution of [H] is $y_{c}(x) = C_{1} e^{1x} + e^{0x} [C_{2} \cos(1x) + C_{3} \sin(1x)]$ $y_{c}(x) = C_{1} e^{x} + C_{2} \cos(x) + C_{3} \sin(x), \qquad C_{1}, C_{2}, C_{3} \in \mathbb{R}$

Step 2 Guess a particular solution
$$y_p(x)$$
 of
the nonhomogeneous ODE [N]:
Because $f(x) = e^{2x} (x+1)$ of degree 1
(x=2 is not a root of the characteristic equation [c]
You can also think of $r=2$ as a root
wy multiplicity 0
guess $y_p(x) = e^{2x} (Ax+B)$
a polynomial of deg 1
Check that 2 is not a root of the characteristic equation
Alternatively, check that e^{2x} is not already part of $y_c(x)$
Alternatively, guess $y_p(x) = x_0^0 e^{2x} (Ax+B)$
0 because $r=2$ is a root wy multiplicity 0 of [C]

Step 3 Compute as many derivatives of
$$y_{p}(x)$$
 as we need for $[N]$
 $y_{p}(x) = e^{2x}(Ax+B)$
 $y_{p}'(x) = 2e^{2x}(Ax+B) + e^{2x}(A) = e^{2x}(2Ax + 2B+A)$
 $y_{p}''(x) = 2e^{2x}(2Ax + 2B+A) + e^{2x}(2A) = e^{2x}(4Ax + 4B + 4A)$
 $y_{p}'''(x) = 2e^{2x}(4Ax + 4B + 4A) + e^{2x}(4A) = e^{2x}(8Ax + 8B + 12A)$

Step 4 Substitute
$$y_{p}$$
 and its derivatives into the nonhomogeneous ODE $[N]$:
 $y''' - y'' + y' - y = e^{2x}(x+i)$
 $e^{2x}(8Ax + 8B + i_{2A}) - e^{2x}(4Ax + 4B + 4A)$
 $+ e^{2x}(2Ax + 2B + A) - e^{2x}(Ax + B) = e^{2x}(x+i)$
 $e^{2x}[(8A - 4A + 2A - A)x + (8B - 4B + 2B - B) + (i_{2}A - 4A + A)] = e^{2x}(x+i)$
 $e^{2x}(5Ax + 5B + 9A) = e^{2x}(x+i)$

Step 5 Find the coefficients so that LHS and RHS match $5A \times = 1 \times \implies 5A = 1$ 5B+9A = 1Solve for $A, B: A = \frac{1}{5}$ $5B + 9(\frac{1}{5}) = 1$ $5B = 1 - \frac{9}{5} = -\frac{4}{5}$ $B = \left[-\frac{4}{25}\right]$

Step 6 Then a particular solution is $y_p(x) = e^{2x} \left(\frac{1}{5}x - \frac{4}{25}\right)$ General solution of the nonhomogeneous ODE [N] is $y(x) = y_c(x) + y_p(x)$

$$Y(x) = c_1 e^{2x} + c_2 cos(x) + c_3 sin(x) + e^{2x} (\frac{1}{5}x - \frac{4}{25}), c_1, c_2, c_3 \in \mathbb{R}$$

Fact 2
If

$$y_{P_1}(x)$$
 is a solution of $a_n y^{(n)} + \dots + a_2 y'' + a_1 y' + a_0 y = f(x)$
and
 $y_{P_2}(x)$ is a solution of $a_n y^{(n)} + \dots + a_2 y'' + a_1 y' + a_0 y = g(x)$,
then
 $y_P(x) = y_{P_1}(x) + y_{P_2}(x)$ is a solution of
 $a_n y^{(n)} + \dots + a_2 y'' + a_1 y' + a_0 y = f(x) + g(x)$

Ex 3 Solve the IVP
$$y^{(3)} + y' = 2 - sin(x)$$
; $y(0) = 0$, $y'(0) = 1$, $y''(0) = 0$.

Step 1 Find general solution of the homogeneous ODE $y^{(3)} + y^{1} = 0 \qquad [H]$ The characteristic equation is $r^{3} + r = 0$ $r(r^{2} + 1) = 0$ $r^{2} + 1 = 0$

Step 2 The nonhomogeneous part is
$$f(x) = 2 - \sin x$$

We now need to go through steps $3-6$ for
 $y^{(3)} + y' = 2$ [N.1] AND $y^{(3)} + y' = -\sin(x)$ [N.2]
 $f_1(x) = e^{0x} 2$
 $f_1(x) = e^{0x} 2$
 $f_2(x) = e^{0x} [-\sin x(1) + \cos x(0)]$
 $f_2(x) = e^{0x} [-\sin x(1) + \cos x(1) + \cos x(0)]$
 $f_2(x) = e^{0x}$

Step 3.2 Compute derivatives of
$$Y_{P2}(x)$$

 $Y_{P2}(x) = x [B \cos x + C \sin x]$
 $Y_{P2}'(x) = B \cos x + C \sin x + x [-B \sin x + C \cos x]$
 $Y_{P2}''(x) = -B \sin x + C \cos x + [-B \sin x + C \cos x]$
 $+ x [-B \cos x - C \sin x]$
 $= -2B \sin x + 2C \cos x + x [-B \cos x - C \sin x]$
 $Y_{P2}''(x) = -3B \cos x - 3C \sin x + x [B \sin x - C \cos x]$

Step 4.1Step 4.2Substitute into the
nonhornogeneous ODE [N.2]Substitute into the
nonhornogeneous ODE [N.1]
$$\neq$$
 $\gamma^{(3)} + \gamma^{1} = -\sin(x)$ $\gamma^{(3)} + \gamma^{1} = 2$ Not the
original [N] $-3B\cos x - 3c\sin x + x[Bsinx - Cosx]$ $0 + A = 2$ $-3B\cos x - 3c\sin x + x[Bsinx + Cosx]$ $0 + A = 2$ $-2B\cos x - 2c\sin x + x[Bsinx + Cosx]$ $z = -sin x$
 $-2B\cos x - 2c\sin x = -sin x$ Step 5.1 $A = 2$ Step 5.1 $A = 2$ Step 6.1 $\gamma_{p1}(x) = 2x$ Step 6.1 $\gamma_{p1}(x) = 2x$ Step 6.1 $\gamma_{p2}(x) = \frac{1}{2} \times sin x$

Extra Step 7
$$y_{p}(\hat{x}) = y_{p_{1}}(\hat{x}) + y_{p_{2}}(\hat{x})$$

 $y_{p}(\hat{x}) = 2x + \frac{1}{2} \times \sin x$ is a solution to the original [N]
 $y^{(3)} + y' = 2 - \sin x$
(by Fact 2)

So a general solution of [N] is $Y(x) = Y_c(x) + Y_p(x)$

 $\gamma(x) = C_1 + C_2 \cos(x) + C_3 \sin(x) + 2x + \frac{1}{2}x \sin x , \quad C_1, C_2, C_3 \in \mathbb{R}$

$$\begin{array}{rcl} Impose & \text{the initial conditions} & y(0) = 0, & y'(0) = 1, & y''(0) = 0 \\ 0 = & y(0) = & C_1 + C_2 & 1 + 0 + 0 + 0 \Rightarrow & 0 = & C_1 + C_2 \\ & y'(x) = & -C_2 & \sin x + & C_3 & \cos x + 2 + & \frac{1}{2} & (\sin x + x & \cos x) \\ 1 = & y'(0) = & 0 & + & C_3 + 2 \Rightarrow & \hline C_3 = -1 \\ & y''(x) = & -C_2 & \cos x - & C_3 & \sin x + & \frac{1}{2} & (\cos x + & \cos x - x & \sin x) \\ 0 = & y''(0) = & - & C_2 + & \frac{1}{2} & (1 + 1) \Rightarrow & \hline C_2 = 1 & so & \hline C_1 = - & C_2 = -1 \\ & & \text{The solution to the IVP is} & y(x) = -1 + & \cos(x) - & \sin(x) + & 2x + & \frac{1}{2}x & \sin x \end{array}$$

Method of undetermined coefficients (for finding a particular solution of a nonhomogeneous linear ODE)

$$a_n y^{(n)} + ... + a_2 y'' + a_1 y' + a_0 y = f(x)$$
 [N]

where $a_n, \ldots, a_2, a_1, a_0 \in \mathbb{R}$ are constants and $a_n \neq 0$.

Step 1 Find roots of the characteristic equation $a_n r^n + ... + a_2 r^2 + a_1 r + a_0 = 0$

of the corresponding homogeneous ODE.

Step 2 Guess
$$y_{p}(x)$$

 $f(x) = e^{-6} (3x^{4} + x)$
 $f(x) = e^{-6}$
 $f(x) = (3x^{4} + x)$

Case
$$a : f(x) = e^{cx} (a \text{ polynomial of degree } m)$$

* If r=c is a root with multiplicity s of the characteristic equation, then guess $y_p(x) = e^{CX} x^{s^{t}} (a polynomial of degree m, with$ undetermined coefficients) $<math>y_p(x) = e^{CX} x^{s} (A_m x^m + ... + A_2 x^2 + A_1 x + A_0)$

Case b:
$$f(x) = e^{Cx} \left[\cos(dx) \begin{pmatrix} a & polynomial & of \\ degree & m_1 \end{pmatrix} + \sin(dx) \begin{pmatrix} a & polynomial & of \\ degree & m_2 \end{pmatrix} \right]$$

 $\underline{Ex} \quad f(x) = 4 \cos(2x) \quad here \quad c=o \quad and \quad the \quad 2nd \quad polynomial \quad is \quad o \quad d=2$
 $f(x) = e^{5x} \left[\cos(2x) \left(x^4 + 6 \right) + \sin(2x) \left(3x \right) \right] \quad c=5, \quad d=2$
 $f(x) = e^{-x} \sin(6x) \quad here \quad c=-1, \quad d=6, \quad and \quad the \quad 1st \quad polynomial \quad is \quad o$

If $r=c\pm di$ are roots with multiplicity s of the characteristic equation, then

set $m \coloneqq \max \text{ of } m_1 \text{ and } m_2$ and

guess

* If r=c±di are not roots of the characteristic equation,

think of them as roots of multiplicity s=0, and

guess

$$Y_{p}(x) = e^{C x} \left[Cos(dx) \left(A_{m} x^{m} + ... + A_{2} x^{2} + A_{1} x + A_{0} \right) + sin(dx) \left(A_{m} x^{m} + ... + A_{2} x^{2} + A_{1} x + A \right) \right]$$

Remark: We have to include both sines and cosines even if f(x) only has one of them because when we differentiate one we get the other

Step 3 Compute as many derivatives of
$$y_p(x)$$
 as we need:
 $y_p'(x), y_p''(x), \dots, y_p^{(n)}(x)$ n is the order of the ODE

Step 4 Substitute XX) and its derivatives into the nonhomogeneous ODE

$$a_n y^{(n)} + ... + a_2 y'' + a_1 y' + a_0 y = f(x)$$
 [N]

Step 5 Find the undetermined coefficients so that LHS and RHS match

Step 6 Substitute these coefficients back into the guessed yp(x).

Extra Step 7
If
$$f(x)$$
 is a sum of terms of the form
Step 2 Case a and Step 2 Case b,
then first apply the method for each term,
then take the sum of all the $y_p(x)$.
Ex If $f(x) = x^q + 3x^2 - x + 10$ we only need to apply the method
once because this fits into
Step 2 Case a: here C=0
If $f(x) = (os(x)(x^q + 3x^2)) + (e^{-3x})$, we need to apply the
Case b Case a method twice, for each term