Sec 3.5 Nonhomogeneous linear equation with constant coefficients

Consider a nonhomogeneous linear ODE with constant coefficients

$$
a_{n} y^{(n)}+\ldots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=f(x) \quad[N]
$$

where $a_{n}, \ldots, a_{2}, a_{1}, a_{0} \in \mathbb{R}$ are constants and $a_{n} \neq 0$.

Then

$$
a_{n} y^{(n)}+\ldots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

is the corresponding homogeneous ODE.

Fact 1 (from Sec 3.1)

$$
\left(\begin{array}{cc}
\text { General solution } \\
y(x) & \text { of the } \\
\text { nonhomogeneous } \\
\text { ODE } & {[N]}
\end{array}\right)=\left(\begin{array}{cc}
G e n e r a l & \text { solution } \\
y_{c}(x) & \text { of the } \\
\text { homogeneous } \\
\text { ODE } & {[H]}
\end{array}\right)+\left(\begin{array}{c}
\text { a particular } \\
\text { solution } \\
y_{p}(x) \\
\text { of the } \\
\text { nonhomogeneous } \\
\text { ODE }[N]
\end{array}\right)
$$

Use the characteristic equation method
from $\sec 3.3$

More complicated.
We'll learn a method that works for a few cases

Note: $Y_{C}(x)$ is called the Complementary solution of $[N]$ or the homogeneous solution of $[N]$

Ex 1 Find a general solution of $y^{\prime \prime}-5 y^{\prime}+6 y=\underbrace{2 x e^{3 x}}_{f(x)}$ [N]

Step 1 Find a general solution of the homogeneous $O D E$

$$
y^{\prime \prime}-5 y^{\prime}+6 y=0 \quad[H]
$$

The characteristic equation is $r^{2}-5 r+6=0$
$(r-2)(r-3)=0$$\quad[c]$

$$
(r-2)(r-3)=0
$$

2,3 are roots, each $w /$ multiplicity 1
(From Sec 3.3) A general solution of $[H]$ is

$$
y_{c}(x)=c_{1} e^{2 x}+c_{2} e^{3 x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Step 2 The nonhomogeneous part of $[N]$ is

$$
f(x)=\underbrace{e^{3 x}} \underbrace{2 x}
$$

Like when we have a root 3 a polynomial of for the characteristic equation degree 1
Idea: Guess a particular solution $y_{p}(x)$ similar to $f(x)$

Should we guess $y_{p}(x)=\underbrace{e^{3 x}}(\underbrace{A x+B)}$? !
same form a polynomial of degree 1
Problem: we would get a term $e^{3 \times} B$ which is already part of $y_{c}(x)=c_{1} e^{2 x}+c_{2} e^{3 x}$.
Fix: Make $y_{p}(x)$ "different enough" by multiplying by x^{1}, because $r=3$ is a root of multiplicity?
Guess $\quad y_{p}(x)=e^{3 x} x(A x+B)=e^{3 x}\left(A x^{2}+B x\right)$ of the characteristic equation.

Step 3 Compute as many derivatives as we need to substitute into [N]:

$$
\begin{aligned}
y_{p}(x) & =e^{3 x}\left(A x^{2}+B x\right) \\
y_{p}^{\prime}(x) & =3 e^{3 x}\left(A x^{2}+B x\right)+e^{3 x}(2 A x+B)=e^{3 x}\left[3 A x^{2}+(3 B+2 A) x+B\right] \\
y_{p}^{\prime \prime}(x) & =3 e^{3 x}\left[3 A x^{2}+(3 B+2 A) x+B\right]+e^{3 x}[6 A x+(3 B+2 A)] \\
& =e^{3 x}\left[9 A x^{2}+(9 B+12 A) x+6 B+2 A\right]
\end{aligned}
$$

Step 4 Substitute into the nonhomogeneous ODE $[N]$:

$$
\begin{aligned}
& y^{\prime \prime}-5 y^{\prime}+6 y=2 x e^{3 x} \\
& e^{3 x}\left[9 A x^{2}+(9 B+12 A) x+6 B+2 A\right] \\
&-5 e^{3 x}\left[3 A x^{2}+(3 B+2 A) x+B\right]+6 e^{3 x}\left(A x^{2}+B x\right)=2 x e^{3 x} \\
& e^{3 x}\left[(9 A-15 A+6 A) x^{2}+(9 B+12 A-15 B-10 A+6 B) x+(6 B+2 A-5 B)=2 x e^{3 x}\right. \\
& e^{3 x}\left[0 \quad x^{2}+2 A x\right.+B+2 A]=2 x e^{3 x}
\end{aligned}
$$

Step 5 Solve for the coefficients A, B so that LHS and RHS are equal

$$
\begin{aligned}
2 A \times+B+2 A & =2 x+0 \\
2 A=2 \Rightarrow & \Rightarrow A=1 \\
B+2 A=0 & \\
& B+2(1)=0 \Rightarrow B=-2
\end{aligned}
$$

Step 6 Then a particular solution is $y_{p}(x)=e^{3 x}\left(1 x^{2}-2 x\right)$ General solution of the nonhomogeneous ODE $[N]$ is

$$
\begin{aligned}
& y(x)=y_{c}(x)+y_{p}(x) \\
& y(x)=c_{1} e^{2 x}+c_{2} e^{3 x}+e^{3 x}\left(x^{2}-2 x\right), \quad c_{1}, c_{2} \in \mathbb{R}
\end{aligned}
$$

$$
\text { Ex } 2 \text { ODE } y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=e^{2 x}(x+1) \quad[N]
$$

Step 1 Find general solution of the homogeneous $O D E$

$$
\begin{equation*}
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0 \tag{H}
\end{equation*}
$$

using Sec 3.3 method
Characteristic equation is

$$
\begin{align*}
& r^{3}-r^{2}+r-1=0 \quad[c] \tag{c}\\
& (r-1)\left(r^{2}+1\right)=0 \\
& r=0 \pm i \text { are conjugate } \\
& \text { root roots, each with } \\
& \text { city } 1 \quad \begin{array}{ll}
\text { multiplicity } 1
\end{array}
\end{align*}
$$

$r=1$ is a root
w/ multiplicity 1

A general solution of $[H]$ is

$$
\begin{aligned}
& y_{c}(x)=c_{1} e^{1 x}+e^{0 x}\left[c_{2} \cos (1 x)+c_{3} \sin (1 x)\right] \\
& y_{c}(x)=c_{1} e^{x}+c_{2} \cos (x)+c_{3} \sin (x), \quad c_{1}, c_{2}, c_{3} \in \mathbb{R}
\end{aligned}
$$

Step 2 Guess a particular solution $y_{p}(x)$ of the nonhomogeneous ODE $[N]$:
Because $f(x)=\underbrace{e^{2 x}}(x+1)$ polynomial

- $r=2$ is not a root of the characteristic equation [c]
- You can also think of $r=2$ as a root w) multiplicity 0
guess $y_{p}(x)=e^{2 x}(\underbrace{A x+B)}$
a polynomial of $\operatorname{deg} 1$
Check that 2 is not a root of the characteristic equation
Alternatively, check that $e^{2 x}$ is not already part of $y_{c}(x)$
Alternatively, guess $y_{p}(x)=x_{p}^{0} e^{2 x}(A x+B)$
0 because $r=2$ is a root wi multiplicity 0 of [$C]$

Step 3 Compute as many derivatives of $y_{p}(x)$ as we need for $[N]$

$$
\begin{aligned}
& y_{p}(x)=e^{2 x}(A x+B) \\
& y_{p}^{\prime}(x)=2 e^{2 x}(A x+B)+e^{2 x}(A)=e^{2 x}(2 A x+2 B+A) \\
& y_{p}^{\prime \prime}(x)=2 e^{2 x}(2 A x+2 B+A)+e^{2 x}(2 A)=e^{2 x}(4 A x+4 B+4 A) \\
& y_{p}^{\prime \prime \prime}(x)=2 e^{2 x}(4 A x+4 B+4 A)+e^{2 x}(4 A)=e^{2 x}(8 A x+8 B+12 A)
\end{aligned}
$$

Step 4 Substitute y_{p} and its derivatives into the nonhomogeneous ODE $[N]$:

$$
\begin{aligned}
& y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=e^{2 x}(x+1) \\
& e^{2 x}(8 A x+8 B+12 A)-e^{2 x}(4 A x+4 B+4 A) \\
& +e^{2 x}(2 A x+2 B+A)-e^{2 x}(A x+B)=e^{2 x}(x+1) \\
& e^{2 x}[(8 A-4 A+2 A-A) x+(8 B-4 B+2 B-B)+(12 A-4 A+A)]=e^{2 x}(x+1) \\
& e^{2 x}(5 A x+5 B+9 A)=e^{2 x}(x+1)
\end{aligned}
$$

Step 5 Find the coefficients so that LHS and RHS match

$$
\begin{aligned}
& 5 A \times=1 \times \Rightarrow 5 A=1 \\
& 5 B+9 A=1
\end{aligned}
$$

Solve for $A, B: \quad A=\frac{1}{5}$

$$
\begin{aligned}
& 5 B+9\left(\frac{1}{5}\right)=1 \\
& 5 B=1-\frac{9}{5}=-\frac{4}{5} \\
& B=-\frac{4}{25}
\end{aligned}
$$

Step 6 Then a particular solution is $y_{p}(x)=e^{2 x}\left(\frac{1}{5} x-\frac{4}{25}\right)$
General solution of the nonhomogeneous ODE $[N]$ is

$$
\begin{aligned}
& y(x)=y_{c}(x)+y_{p}(x) \\
& y(x)=c_{1} e^{2 x}+c_{2} \cos (x)+c_{3} \sin (x)+e^{2 x}\left(\frac{1}{5} x-\frac{4}{25}\right), \quad c_{1}, c_{2}, c_{3} \in \mathbb{R}
\end{aligned}
$$

Fact 2

If
$y_{p_{1}}(x)$ is a solution of $a_{n} y^{(n)}+\ldots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=f(x)$
and
$y p_{p_{2}}(x)$ is a solution of $a_{n} y^{(n)}+\ldots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x)$,
then
$y_{p}(x)=y_{p_{1}}(x)+y_{p_{2}}(x)$ is a solution of

$$
a_{n} y^{(n)}+\ldots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=f(x)+g(x)
$$

Ex 3 Solve the IVP $y^{(3)}+y^{\prime}=2-\sin (x) ; y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=0$.
[N]

Step 1 Find general solution of the homogeneous ODE

$$
y^{(3)}+y^{\prime}=0 \quad[H]
$$

The characteristic equation is

$$
\begin{aligned}
r^{3}+r & =0 \\
r\left(r^{2}+1\right) & =0 \\
r^{2}+1 & =0
\end{aligned}
$$

$r=0$ is a root
w/ multiplicity 1
$r=0 \pm i$ are roots $w /$ multiplicity 1
A general solution of $[H]$ is

$$
\begin{aligned}
& y_{c}(x)=c_{1} e^{0 x}+e^{0 x}\left[c_{2} \cos (1 x)+c_{3} \sin (1 x)\right] \\
& y_{c}(x)=c_{1}+c_{2} \cos (x)+c_{3} \sin (x)
\end{aligned}
$$

Step 2 The nonhomogeneous part is $f(x)=2-\sin x$
We now need to go through steps 3-6 for

$$
\begin{aligned}
& y^{(3)}+y^{\prime}=2 \\
& f_{1}(x)=e^{0 x} \\
& f_{1}(x)
\end{aligned} \quad \text { AND } \quad y^{(3)}+y^{\prime}=\underbrace{-\sin (x)}_{f_{2}(x)}[N .2]
$$ equation degree 0

ω multiplicity 1
Guess

$$
y_{p_{1}}(x)=\underbrace{e^{0 x}}_{\text {same }} x^{1(A)} \underbrace{(A)} \text { of } r=0 \text { is } 1
$$ of degree 0 w/ undetermined coefficient

The roots $0 \pm 1 i$ are roots of the characteristic equation w/ multiplicity 1.
Guess multiplicity of $\pm i$ is 1

$$
y_{p_{2}}(x)=e^{0 x} x^{1}[B \cos x+C \sin x]
$$

Step 3.1 Compute derivatives of $y_{p i}(x)$

$$
\begin{aligned}
& y_{p 1}(x)=A x \\
& y_{p 1}^{\prime}(x)=A \\
& y_{p 1}^{\prime \prime}(x)=y_{p 1}^{\prime \prime \prime}(x)=0
\end{aligned}
$$

Step 3.2 Compute derivatives of $y_{p_{2}}(x)$

$$
\begin{aligned}
& y_{p_{2}}(x)= x[B \cos x+C \sin x] \\
& y_{p_{2}}^{\prime}(x)= B \cos x+C \sin x+x[-B \sin x+C \cos x] \\
& y_{p_{2}}^{\prime \prime}(x)=-B \sin x+C \cos x+[-B \sin x+C \cos x] \\
&+x[-B \cos x-C \sin x] \\
&=-2 B \sin x+2 C \cos x+x[-B \cos x-C \sin x] \\
& y_{p_{2}^{\prime \prime}}^{\prime \prime \prime}(x)=-3 B \cos x-3 C \sin x+x[B \sin x-C \cos x]
\end{aligned}
$$

Step 4.1
Substitute into the nonhomogeneous ODE $[N, 1]$

$$
\begin{aligned}
y^{(3)}+y^{\prime} & =2 \\
0+A & =2
\end{aligned}
$$

Not the original $[N]$

Step 5.1 $A=2$

Step 6.1 $y_{p 1}(x)=2 x$

Step 4.2 Substitute into the nonhomogeneous ODE $[N, 2]$

$$
\begin{gathered}
y^{(3)}+y^{\prime}=-\sin (x) \\
0-3 B \cos x-3 C \sin x+x[B \sin x-C \cos x] \\
+B \cos x+C \sin x+x[-B \sin x+C \cos x] \\
=-\sin x \\
0 \quad-2 B \cos x-2 C \sin x=-\sin x
\end{gathered}
$$

$$
\left.\begin{array}{rl}
\text { Step 5.2 }
\end{array} \begin{array}{rl}
-2 B & =0 \\
-2 C & =-1
\end{array}\right\} \Rightarrow \begin{aligned}
& B=0 \\
& C=\frac{1}{2}
\end{aligned}
$$

Step $6.2 \quad y_{p 2}(x)=x\left[0 \cos x+\frac{1}{2} \sin x\right]$

$$
y_{p_{2}}(x)=\frac{1}{2} x \sin x
$$

Extra step $7 \quad y_{p}(x)=y_{p_{1}}(x)+y_{p_{2}}(x)$
$y_{p}(x)=2 x+\frac{1}{2} x \sin x$ is a solution to the original $[N]$

$$
y(3)+y^{\prime}=2-\sin x
$$

(by Fact 2)

So a general solution of $[N]$ is $y(x)=y_{c}(x)+y_{p}(x)$

$$
y(x)=c_{1}+c_{2} \cos (x)+c_{3} \sin (x)+2 x+\frac{1}{2} x \sin x, \quad c_{1}, c_{2}, c_{3} \in \mathbb{R}
$$

Impose the initial conditions $y(0)=0, \quad y^{\prime}(0)=1, \quad y^{\prime \prime}(0)=0$

$$
\begin{aligned}
0= & y(0)=c_{1}+c_{2} 1+0+0+0 \Rightarrow 0=c_{1}+c_{2} \\
& y^{\prime}(x)=-c_{2} \sin x+c_{3} \cos x+2+\frac{1}{2}(\sin x+x \cos x) \\
1= & y^{\prime}(0)=0+c_{3}+2 \Rightarrow c_{3}=-1 \\
& y^{\prime \prime}(x)=-c_{2} \cos x-c_{3} \sin x+\frac{1}{2}(\cos x+\cos x-x \sin x) \\
0= & y^{\prime \prime}(0)=-c_{2}+\frac{1}{2}(1+1) \Rightarrow c_{2}=1 \quad \text { so } c_{1}=-c_{2}=-1
\end{aligned}
$$

The solution to the IVP is $y(x)=-1+\cos (x)-\sin (x)+2 x+\frac{1}{2} x \sin x$

Method of undetermined coefficients
(for finding a particular solution of a nonhomogeneous linear $O D E$)

Consider a nonhomogeneous linear ODE with constant coefficients

$$
a_{n} y^{(n)}+\ldots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=f(x) \quad[\mathrm{N}]
$$

where $a_{n}, \ldots, a_{2}, a_{1}, a_{0} \in \mathbb{R}$ are constants and $a_{n} \neq 0$.

Step 1 Find roots of the characteristic equation

$$
a_{n} r^{n}+\ldots+a_{2} r^{2}+a_{1} r+a_{0}=0
$$

of the corresponding homogeneous ODE.

Step 2 Guess $y_{p}(x)$

$$
\begin{aligned}
\varepsilon x: f(x) & =e^{-6 x}\left(3 x^{4}+x\right) \\
f(x) & =e^{-6} \\
f(x) & =\left(3 x^{4}+x\right)
\end{aligned}
$$

Case a: $f(x)=e^{c x}$ (a polynomial of degree m)

* If $r=c$ is a root with multiplicity s of the characteristic equation, then guess $y_{p}(x)=e^{c x} x^{s^{b}}$ (a polynomial of degree m, with undetermined coefficients)

$$
y_{p}(x)=e^{c x} x^{s}\left(A_{m} x^{m}+\ldots+A_{2} x^{2}+A_{1} x+A_{0}\right)
$$

* If $r=c$ is not a root of the characteristic equation, then think of $r=c$ as a root with multiplicity $s=0$, and guess $y_{p}(x)=e^{c x} x^{0}$ (a polynomial of degree m, with undetermined coefficients)

$$
y_{p}(x)=e^{c x}\left(A_{m} x^{m}+\ldots+A_{2} x^{2}+A_{1} x+A_{0}\right)
$$

case b: $f(x)=e^{c x}\left[\cos (d x)\binom{\right.$ a polynomial of }{ degree $m_{1}}+\sin (d x)\binom{$ a polynomial of }{ degree $\left.m_{2}}\right]$
Ex $f(x)=4 \cos (2 x)$ here $c=0$ and the and polynomial is $0, d=2$

$$
f(x)=e^{5 x}\left[\cos (2 x)\left(x^{4}+6\right)+\sin (2 x)(3 x)\right] \quad c=5, d=2
$$

$$
f(x)=e^{-x} \sin (6 x) \text { here } c=-1, d=6 \text {, and the 1st polynomial is } 0
$$

* If $r=c \pm d i$ are roots with multiplicity s of the characteristic equation, then

$$
\begin{aligned}
& \text { set } m=\max \text { of } m_{1} \text { and } m_{2} \\
& \text { and }
\end{aligned}
$$

guess
$y_{p}(x)=e^{c x} x^{s}\left[\cos (d x)\binom{\right.$ a polynomial of deg $m_{2}}{$ with undetermined coefficients }$+\sin (d x)\binom{$ another polynomial of deg $m_{2}}{$ with undetermined coefficients }$]$
$y_{p}(x)=e^{c x} x^{s}\left[\cos (d x)\left(A_{m} x^{m}+\ldots+A_{2} x^{2}+A_{1} x+A_{0}\right)+\sin (d x)\left(A_{m} x^{m}+\ldots+A_{2} x^{2}+A_{1} x+A\right)\right]$

* If $r=c \pm d i$ are not roots of the characteristic equation,
think of them as roots of multiplicity $s=0$, and
guess

$$
y_{p}(x)=e^{c x}\left[\cos (d x)\left(A_{m} x^{m}+\ldots+A_{2} x^{2}+A_{1} x+A_{0}\right)+\sin (d x)\left(A_{m} x^{m}+\ldots+A_{2} x^{2}+A_{1} x+A\right)\right]
$$

Remark: We have to include both sines and cosines even if $f(x)$ only has one of them because when we differentiate one we get the other

Step 3 Compute as many derivatives of $y_{p}(x)$ as we need: $y_{p}^{\prime}(x), y_{p}^{\prime \prime}(x), \ldots, y_{p}^{(n)}(x){ }^{n}$ is the order of the ODE

Step 4 Substitute $y_{p}(x)$ and its derivatives into the nonhomogeneous ODE

$$
\begin{equation*}
a_{n} y^{(n)}+\ldots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=f(x) \tag{N}
\end{equation*}
$$

Step 5 Find the undetermined coefficients so that LHS and RHS match

Step 6 Substitute these coefficients back into the guessed $y_{p}(x)$.

Extra Step 7
If $f(x)$ is a sum of terms of the form
Step 2 Case a and Step 2 case b, then first apply the method for each term, then take the sum of all the $y_{p}(x)$.

Ex If $f(x)=x^{4}+3 x^{2}-x+10$ we only need to apply the method once because this fits into step 2 case a : here $c=0$
If $f(x)=\cos (x)\left(x^{4}+3 x^{2}\right)+e^{-3 x}$, we need to apply the case b case a method twice, for each term

