Sec 3.3: Homogeneous equations w/ constant coefficients solve them
A small example 1 all

Consider a homogeneous 2nd-order linear ODE w/ constant coefficients

$$
\underbrace{4}_{\text {constant }} y^{\prime \prime}+5 y^{\prime}+5 y=0 \quad[H]
$$

Characteristic equation is (Think of y as the orth derivative of y)

$$
r^{2}-4 r+5=0 \quad[c]
$$

Find roots of $[c]$, using quadratic formula or "complete the square":

$$
\begin{aligned}
r^{2}-4 r & =-5 \\
r^{2}-2.2 r+2^{2} & =-5+2^{2} \\
(r-2)^{2} & =-1 \\
r-2 & = \pm \sqrt{-1}= \pm i \quad a=2 \quad b=1 \\
r & =2 \pm i \quad
\end{aligned}
$$

The general solution of the ODE $[\mathrm{H}]$ is

$$
\begin{aligned}
& y(x)=e^{a x}\left[c_{1} \cos (b x)+c_{2} \sin (b x)\right] \\
& y(x)=\underbrace{e^{2 x}\left[c_{1} \cos (x)+c_{2} \sin (x)\right]}, c_{1}, c_{2} \in \mathbb{R} \\
& \text { a linear combination of } e^{2 x} \cos x \text { and } e^{2 x} \sin x
\end{aligned}
$$

Fundamental Thu of Algebra
A polynomial of degree n with coefficients in \mathbb{C} has exactly n roots in \mathbb{C} (counting multiplicities).

In particular, a polynomial of degree n with coefficients in \mathbb{R} has exactly n roots in \mathbb{C} (counting multiplicities).

Method for finding solution of homogeneous linear ODE w/ constant coefficients

Consider the n-th order ODE

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 \tag{H}
\end{equation*}
$$

where $a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}, a_{0} \in \mathbb{R}$ are constants and $a_{n} \neq 0$

Step 1 Write the characteristic equation associated w/ [H]:
$a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{2} r^{2}+a_{1} r+a_{0}=0$

It has exactly n complex roots, counted with multiplicities.
The roots can be:

- Real roots (with any multiplicity)
- Pairs of complex conjugate roots with the same multiplicity, that is, if $a+b i$ is a root with multiplicity m,
then $a-b i$ is also a root with multiplicity m.
Ex $\quad(r-3)^{4}(r+1)^{5} \underbrace{\left(r^{2}+4\right)^{3}}_{(r-2 i)^{3}(r+2 i)^{3}}=0$
has 15 roots, counted with multiplicity:

4. 3 is a root with multiplicity 4.
5. - 1 is a root with multiplicity 5
$\frac{3 \times 2}{15}+\left\{\begin{array}{l}\cdot 2 i \text { is a root with multiplicity } 3 \\ \text { Its conjugate }-2 i \text { is also a root with multiplicity }\end{array}\right.$

Step 2 Each root with multiplicity m contributes m terms to the general solution of the ODE [H]:

* Each real root $r_{1} \in \mathbb{R}$ of the characteristic equation [c] with multiplicity m contributes these m terms:
a linear combination of m "linearly independent" "fundamental" solutions

$$
\left.\begin{array}{l}
\overbrace{}^{c_{1} e^{r_{1} x}+c_{2} x e^{r_{1} x}+c_{3} x^{2} e^{r_{1} x}+\ldots+e_{m}^{r_{1} x}, x^{m-1} e^{r_{1} x}}= \\
c_{1} x
\end{array} c_{1}+c_{2} x+c_{3} x^{2}+\ldots+c_{m} x^{m-1}\right) e^{r_{1} x}, \quad, \quad . \quad .
$$

Ex If 5 is a real root w/ multiplicity 3, it would contribute these 3 terms $\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{5 x}, \quad c_{1}, c_{2}, c_{3} \in \mathbb{R}$

* Each conjugate pair of complex roots $a+b i$ and $a-b i$ of the characteristic equation [c], each with multiplicity m, contributes these 2 m terms
a linear combination of 2 m "linearly independent", "fundamental" solutions

$$
\begin{array}{ll}
e^{a x} \cos (b x), & e^{a x} \times \cos (b x), \cdots, \\
e^{a x} \sin (b x), & e^{a x} \times \sin (b x), \cdots, e^{a x} x^{m-1} \cos (b x), \\
e^{a x} x^{m-1} \sin (b x),
\end{array}
$$

$$
A_{1} e^{a x} \cos (b x)+A_{2} e^{a x} x \cos (b x)+\ldots .+A_{m} e^{a x} x^{m-1} \cos (b x)
$$

$$
+B_{1} e^{a x} \sin (b x)+B_{2} e^{a x} x \sin (b x)+\ldots+B_{m} e^{a x} x^{m-1} \sin (b x),
$$

$$
A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{m} \in \mathbb{R}
$$

Ex 2 Find general solution of $O D E$

$$
9 y^{(5)}-6 y^{(4)}+y^{(3)}=0
$$

5 th-order
Ans

Step 1 Characteristic equation is

$$
\begin{aligned}
& 9 r^{5}-6 r^{4}+r^{3}=0 \\
& r^{3}\left(9 r^{2}-6 r+1\right)=0
\end{aligned}
$$

$$
9 r^{2}-6 r+1=0
$$

$$
(3 r-1)^{2}=0
$$

$$
3 r=1
$$

$$
r^{3}=0
$$

$r_{2}=\frac{1}{3}$ is a root $w /$ multiplicity 2
$r_{1}=0$ is a root $w /$ multiplicity 3
(A)

Step 2 The general solution of the ODE is

$$
\begin{aligned}
y(x) & =\left(C_{1}+c_{2} x+C_{3} x^{2}\right) e^{0 x}+\left(c_{4}+c_{5} x\right) e^{\frac{1}{3} x} \\
& =c_{1}+C_{2} x+C_{3} x^{2}+\left(c_{4}+c_{5} x\right) e^{\frac{1}{3} x}, \underbrace{c_{1}, c_{2}, c_{3}, c_{4}, c_{5} \in \mathbb{R}}_{4}
\end{aligned}
$$

Sanity check: The general solution should have 5 terms because the ODE has order 5 . five Constants because the ODE has order 5

The 5 functions should all look "different enough" 1, $x, x^{2}, e^{\frac{1}{3} x}, x e^{\frac{1}{3} x}$ are "different enough"

Ex 3 Find an ODE for which a general solution is

$$
\begin{aligned}
y(x) & =C_{1}+C_{2} x+C_{3} x^{2}+C_{4} x^{3}+C_{5} x^{4} \\
& +\left(C_{6}+C_{7} x+C_{8} x^{2}\right) \cos (2 x) \\
& +\left(C_{9}+C_{10} x+C_{11} x^{2}\right) \sin (2 x)
\end{aligned}
$$

Eleven terms
Ans The form for the general solution fits a homogeneous 11 -th order linear ODE $w /$ constant coefficients. These five terms tell us we need a root $r_{1}=0$ w/ multiplicity 5

$$
\left.\begin{array}{rl}
y(x) & =\left(C_{1}+C_{2} x+C_{3} x^{2}+C_{4} x^{3}+C_{5} x^{4}\right) e^{0 x} \\
+ & \left(C_{6}+C_{7} x+C_{8} x^{2}\right) e^{0 x} \cos (2 x) \\
& +\underbrace{}_{9}+C_{10} x+C_{11} x^{2}) e^{0 x} \sin (2 x)
\end{array}\right\} \begin{aligned}
& e^{0 x} \cos (2 x) \text { and } \\
& e^{0 x} \sin (2 x) \\
& \text { tell us we need } \\
& \text { The three terms tell us the multiplicity } \quad \text { a root } 0 \pm 2 i
\end{aligned}
$$ of $0+2 i$ and $0-2 i$ is three each

A characteristic equation we want is

$$
\begin{aligned}
& r^{5}(r-(0+2 i))^{3}(r-(0-2 i))^{3}=0 \\
& r^{5}((r-2 i)(r+2 i))^{3}=0
\end{aligned}
$$

multiply $r^{5}\left(r^{2}+4\right)^{3}=0$
out

$$
\begin{aligned}
& r^{5}\left(r^{4}+8 r^{2}+16\right)\left(r^{2}+4\right) \\
& r^{5}\left(r^{6}+4 r^{4}+8 r^{4}+32 r^{2}+16 r^{2}+64\right)=0 \\
& r^{5}\left(r^{6}+12 r^{4}+48 r^{2}+64\right)=0 \\
& r^{11}+12 r^{9}+48 r^{7}+64 r^{5}=0
\end{aligned}
$$

Sanity check: The characteristic polynomial has degree $11=5+2.3$
The ODE corresponding to this characteristic equation is

$$
y^{(11)}+12 y^{(9)}+48 y^{(7)}+64 y^{(5)}=0
$$

Ex 4 Solve $y^{(3)}+y^{1}-10 y=0 \quad$ Hint: $2^{3}+2-10=0$

Ans The characteristic equation is

$$
r^{3}+r-10=0
$$

Since $2^{3}+2-10=0,2$ is a root,
so $(r-2)$ is a factor of $r^{3}+r-10$.

Perform long division to compute $\frac{r^{3}+r-10}{r-2}$:

$$
r-2 \left\lvert\, \begin{aligned}
& \frac{r^{2}+2 r+5}{r^{3}+r-10} \\
& \frac{r^{3}-2 r^{2}}{2 r^{2}+r-10} \\
& \frac{2 r^{2}-4 r}{5 r-10} \\
& \frac{5 r-10}{0}
\end{aligned}\right.
$$

$$
\text { So } \quad \frac{r^{3}+r-10}{r-2}=r^{2}+2 r+5
$$

So $r^{3}+r-10=(r-2)\left(r^{2}+2 r+5\right)$
So $r-2=0$ and $r^{2}+2 r+5=0$
One real root 2

$$
\begin{aligned}
r^{2}+2 r & =-5 \\
r^{2}+2 r+1 & =-5+1 \\
(r+1)^{2} & =-4 \\
r+1 & = \pm \sqrt{-4}= \pm 2 i \\
r & =-1 \pm 2 i
\end{aligned}
$$

conjugate pair of complex roots, each with multiplicity 1

General solution is

$$
y(x)=C e^{2 x}+e^{-x}[A \cos (2 x)+B \sin (2 x)], \quad C, A, B \in \mathbb{R}
$$

