Recall Vocabulary words:
* Two functions f and g are linearly dependent
if
$$\frac{f}{g} = (a \text{ constant})$$
 or $\frac{g}{f} = (a \text{ constant})$
* f and g are linearly independent if they are not linearly dependent,
that is, if $\frac{f}{g}$ is not a constant and $\frac{g}{f}$ is not a constant.

$$\frac{E_{x}}{f = e^{x}} = e^{-2x}$$

$$\frac{f}{g} = \frac{e^{x}}{e^{-2x}} = e^{3x} = e^{3x} \text{ is not a constant}$$

$$\frac{e^{x}}{g} = \frac{e^{x}}{e^{-2x}} = e^{2x} = e^{3x} \text{ is not a constant}$$

$$\frac{e^{x}}{e^{-2x}} = e^{2x} = e^{2x} = e^{2x}$$

$$\frac{e^{x}}{e^{-2x}} = e^{2x} = e^{2x}$$

Another way to test for linear independence

Def The Wronskian of two functions
$$f(x)$$
 and $g(x)$
is the "determinant"
 $W(f,g) = \begin{vmatrix} f & g \\ f' & g' \end{vmatrix} = fg' - f'g$

Theorem (Wronskian and linear independence)
Let
$$f(x)$$
 and $g(x)$ be two differentiable functions on an open interval I.
If $W(f,g) \neq 0$ for some x in \pm , meaning $W(f,g)$ is not
the constant zero function
then $f(x)$ and $g(x)$ are linearly independent

Same
$$\mathcal{E}_{x}$$
 $f = e^{x}$ $g = e^{-2x}$ Compute the Wronskian
Ans $f^{i} = e^{x}$ $g' = -2e^{-2x}$
 $W(f_{i}g) = \begin{vmatrix} f & g \\ f' & g' \end{vmatrix} = fg' - f'_{i}g = e^{x}(-2e^{-2x}) - e^{x}(e^{-2x})$
 $= -2e^{-x} - e^{-x}$
 $= -3e^{-x}$
 $-3e^{-x}$ is not the zero function
So $f(x) = e^{x}$ and $g(x) = e^{-2x}$ are linearly independent.
Thm (General solutions of homogeneous equations)
Let $y_{1}(x)$ and $y_{2}(x)$ be two linearly independent solutions of
the homogeneous equation
 $y'' + p(x) y' + q(x) y = 0$,
with $p(x)$ and $q(x)$ continuous on the open interval I.
Then any solution $y(x)$ can be written in the form
 $y(x) = c_{1} y_{1}(x) + c_{2} y_{2}(x)$ for all $x \in I$.

Rem We say y(x) is a "linear combination" of $y_1(x)$ and $y_2(x)$.

Q: Can we always find two linearly independent solutions of

$$y'' + p(x) y' + q(x) y = 0$$
?
A: Yes! By the Existence & Uniqueness Thm,
we can, on some interval I where $p(x)$ and q are continuous.
How?
By the thm, there is a unique solution $y_1(x)$ such that
 $y_1(a) = 1$, $y_1'(a) = 0$ for some $a \in I$
and there is a unique solution $y_2(x)$ such that
 $y_2(a) = 0$, $y_2'(a) = 1$ for some $a \in I$
How do we know these $y_1(x)$ and $y_2(x)$ are linearly independent?
If they were lin. dependent, then
 $y_1 = k y_2$ for some k
(This would imply $1 = y_1(a) = k y_2(a) = 0$ which is impossible)
ar $y_2 = k y_1$ for some k
(implying $1 = y_2'(a) = k y_1'(a) = 0$ which is impossible),
so they are not lin. dependent.

Then every solution of y'' - 4y = 0 can be written as $y(x) = C_1 e^{2x} + C_2 e^{-2x}$ for $C_1, C_2 \in \mathbb{R}$ So this is a general solution

But consider
$$y_3(x) = \cosh(2x)$$
 $y_4(x) = \sinh(2x)$
 $y_3'(x) = 2\sinh(2x)$ $y_4'(x) = \cosh(2x)$
 $y_3''(x) = 4\cosh(2x)$ $y_4''(x) = \sinh(2x)$

$$y_{3}''(x) - 4 y_{3}(x) = 0$$
 and $y_{4}''(x) - 4 y_{4}(x) = 0$

So $y_3(x)$ and $y_4(x)$ are also solutions to the ODE. They are also linearly independent: $\frac{Y_4(x)}{Y_3(x)} = \frac{\sinh(2x)}{\cosh(2x)} = \tanh(2x)$ constant Then every solution of y'' - 4y = 0 can be written as

$$y(x) = C_1 \cosh(2x) + C_2 \sinh(2x) \quad \text{for} \quad C_1, \quad C_2 \in \mathbb{R}$$

So this is another general solution

$$\frac{\text{Rem}}{\text{cosh}(2x)} = \frac{1}{2}e^{2x} + \frac{1}{2}e^{-2x} \qquad \text{sinh}(2x)^{\text{def}} = \frac{1}{2}e^{2x} - \frac{1}{2}e^{-2x}$$

Upshot: We may find different pairs of linearly independent solutions of y'' + p(x) y' + q(x) = 0.

Hence we have multiple ways of giving a general solution.

Thm (General solutions of non homogeneous linear equations) Thm 5 in Sec 3.2

Every solution
$$y(x)$$
 on an open interval I of
the nonhomogeneous 2nd-ordex linear ODE
 $y'' + p(x) y' + q(x) y = f(x)$ [X]
can be written as
 $y(x) = C_1 Y_1(x) + C_2 Y_2(x) + Y_p(x)$
a general solution of Particular
solution
the homogeneous ODE of [X]
where $y_1(x)$ and $y_2(x)$ are linearly independent solutions
of the homogeneous equation
 $y'' + p(x) y' + q(x) y = 0$
and $y_p(x)$ is any particular solution farticular solution

Ober al solution Deneral solution larticular solution of non homogeneous = of homogeneous + of non homogeneous ODE ODE DE DOE (Will learn techniques for finding both)

Rem: Every concept & theorem in this section (for 2nd-order) also works for linear ODEs of order n=3 and higher.

 $\frac{1}{\frac{1}{1}} = \frac{1}{\frac{1}{1}} = \frac{1}{\frac{1}{1}} = \frac{1}{1} = \frac{1}{1$

so a general solution is
$$y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$
, $C_1, C_2 \in \mathbb{R}$

(b) If the characteristic equation has one real root
$$r_1$$
 wy multiplicity 2
 $\begin{pmatrix} ex & r^2 - 10r + 2s = 0 \\ (r - 5)^2 = 0 \end{pmatrix}$ has one real root 5 wy multiplicity 2
 $\begin{pmatrix} r_1 - 5 \end{pmatrix}^2 = 0 \end{pmatrix}$
then $e^{r_1 \times r_1}$ and $\times e^{r_1 \times r_2}$ are two linearly independent

solutions,

so a general solution is
$$y(x) = c_1 e^{r_1 x} + c_2 x e^{r_1 x}$$

= $(c_1 + c_2 x) e^{r_1 x}$, $c_1, c_2 \in \mathbb{R}$

(C) If the characteristic equation has complex roots, then ... STAY TUNED $\frac{Ex}{DE} = 0 \quad y'' + 2y' = 0$ Step 1 The characteristic equation is $r^2 + 2r = 0$ r(r + 2) = 0Two distinct real roots 0 and -2

Step 2 A general solution is

$$y(x) = C_1 e^{0x} + C_2 e^{-2x}$$

$$= C_1 + C_2 e^{-2x}, \quad C_1, C_2 \in \mathbb{R}$$

$$\frac{\varepsilon_{\times}}{\varepsilon_{\times}} \quad \text{IVP} \quad y'' + 2y' + y = 0, \quad y(0) = 5, \quad y'(0) = -3$$

Step 1 The characteristic equation is $r^2 + 2r + 1 = 0$
 $(r+1)^2 = 0$
Single real root -1 with multiplicity 2

Step 2 A general solution is

$$\gamma(x) = C_1 e^{-x} + C_2 \times e^{-x}, \quad C_1, C_2 \in \mathbb{R}$$

Step 3 Impose the initial conditions

$$5 = \gamma(0) = C_{1}e^{0} + C_{2}O = C_{1} \qquad s_{0} \qquad C_{1} = 5$$

$$\gamma^{1}(x) = -C_{1}e^{-x} + C_{2}e^{-x} - C_{2}xe^{-x}$$

$$-3 = \gamma^{1}(0) = -C_{1}e^{0} + C_{2}e^{0} - C_{2}O = -5 + C_{2} \qquad s_{0} \qquad C_{2} = 2$$
The (particular) solution of the IVP is $\gamma(x) = 5e^{-x} + 2xe^{-x}$