Sec 3.1 2nd-order linear ODE part b
Recall Vocabulary words:

* Two functions f and g are linearly dependent if $\frac{f}{g}=(a$ constant $)$ or $\frac{g}{f}=($ a constant $)$
* f and g are linearly independent if they are not linearly dependent, that is, if $\frac{f}{g}$ is not a constant and $\frac{g}{f}$ is not a constant.
εx

$$
f=e^{x} \quad g=e^{-2 x}
$$

$\frac{f}{g}=\frac{e^{x}}{e^{-2 x}}=e^{x+2 x}=e^{3 x}$ is not a constant

So e^{x} and $e^{-2 x}$ are linearly independent

Another way to test for linear independence

We compute the Wroskian $W(f, g)$ (more powerful when dealing w/ linear ODEs of order 3 or higher)

Def The Wronskian of two functions $f(x)$ and $g(x)$
is the "determinant"

$$
W(f, g)=\left|\begin{array}{cc}
f & g \\
f^{\prime} & g^{\prime}
\end{array}\right|=f g^{\prime}-f^{\prime} g
$$

Theorem (Wronskian and linear independence)
Let $f(x)$ and $g(x)$ be two differentiable functions on an open interval I.

If $W(f, g) \neq 0$ for some x in I, \longrightarrow meaning $W(f, g)$ is not then $f(x)$ and $g(x)$ are linearly independent

Same $\varepsilon x \quad f=e^{x} \quad g=e^{-2 x} \quad$ Compute the Wronskian
Ans $\quad f^{\prime}=e^{x} \quad g^{\prime}=-2 e^{-2 x}$

$$
\begin{aligned}
W(f, g)=\left|\begin{array}{cc}
f & g \\
f^{\prime} & g^{\prime}
\end{array}\right|=f g^{\prime}-f^{\prime} g & =e^{x}\left(-2 e^{-2 x}\right)-e^{x}\left(e^{-2 x}\right) \\
& =-2 e^{-x}-e^{-x} \\
& =-3 e^{-x}
\end{aligned}
$$

$-3 e^{-x}$ is not the zero function
So $f(x)=e^{x}$ and $g(x)=e^{-2 x}$ are linearly independent.
Thm (General solutions of homogeneous equations)
Let $y_{1}(x)$ and $y_{2}(x)$ be two linearly independent solutions of the homogeneous equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

with $p(x)$ and $q(x)$ continuous on the open interval I.
Then any solution $y(x)$ can be written in the form

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \quad \text { for all } x \in I .
$$

for some numbers

Rem We say $y(x)$ is a "linear combination" of $y_{1}(x)$ and $y_{2}(x)$.

Q: Can we always find two linearly independent solutions of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

A: Yes! By the Existence \& Uniqueness Thu, we can, on some interval I where $p(x)$ and q are continuous.
How?
By the tho, there is a unique solution $y_{1}(x)$ such that $y_{1}(a)=1, \quad y_{1}^{\prime}(a)=0$ for some $a \in I$
and there is a unique solution $y_{2}(x)$ such that $y_{2}(a)=0, \quad y_{2}^{\prime}(a)=1$ for some $a \in I$

How do we know these $y_{1}(x)$ and $y_{2}(x)$ are linearly independent? If they were lin. dependent, then

$$
y_{1}=k y_{2} \text { for some } k
$$

(This would imply $1=y_{1}(a)=k y_{2}(a)=0$ which is impossible) or $y_{2}=k y_{1}$ for some k
(implying $1=y_{2}^{\prime}(a)=k y_{1}^{\prime}(a)=0$ which is impossible), so they are not lin. dependent.

Summary so far: We know that two linearly independent solutions of a homogeneous 2nd-order linear ODE exist,
but we don't know how to compute them. This might be difficult.

Ex ODE $\quad y^{\prime \prime}-4 y=0$
(1) Check that $y_{1}(x)=e^{2 x}$ and $y_{2}(x)=e^{-2 x}$ are

Solutions to the ODE.
(1) Check that they are linearly independent.

Then every solution of $y^{\prime \prime}-4 y=0$ can be written as

$$
y(x)=c_{1} e^{2 x}+c_{2} e^{-2 x} \quad \text { for } \quad c_{1}, c_{2} \in \mathbb{R}
$$

So this is a general solution
But consider $y_{3}(x)=\cosh (2 x)$

$$
y_{4}(x)=\sinh (2 x)
$$

$$
\begin{array}{ll}
y_{3}^{\prime}(x)=2 \sinh (2 x) & y_{4}^{\prime}(x)=\cosh (2 x) \\
y_{3}^{\prime \prime}(x)=4 \cosh (2 x) & y_{4}^{\prime \prime}(x)=\sinh (2 x) \\
y_{3}^{\prime \prime}(x)-4 y_{3}(x)=0 & \text { and } \\
y_{4}^{\prime \prime}(x)-4 y_{4}(x)=0
\end{array}
$$

So $y_{3}(x)$ and $y_{4}(x)$ are also solutions to the ODE. They are also linearly independent: $\frac{y_{4}(x)}{y_{3}(x)}=\frac{\sinh (2 x)}{\cosh (2 x)}=\tanh (2 x)$ function

Then every solution of $y^{\prime \prime}-4 y=0$ can be written as

$$
y(x)=c_{1} \cosh (2 x)+c_{2} \sinh (2 x) \text { for } c_{1}, c_{2} \in \mathbb{R}
$$

So this is another general solution

Rem $\cosh (2 x) \stackrel{\text { def }}{=} \frac{1}{2} e^{2 x}+\frac{1}{2} e^{-2 x} \quad \sinh (2 x) \stackrel{\text { def }}{=} \frac{1}{2} e^{2 x}-\frac{1}{2} e^{-2 x}$
Upshot: We may find different pairs of linearly independent solutions of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x)=0 .
$$

Hence we have multiple ways of giving a general solution.

Thm (General solutions of non homogeneous linear equations) Thu 5 in Sec 3.2

Every solution $y(x)$ on an open interval I of the nonhomogeneous 2nd-order linear ODE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \quad[x]
$$

can be written as

$$
y(x)=\underbrace{C_{1} y_{1}(x)+C_{2} y_{2}(x)}_{\text {a general solution of }}+\underbrace{y_{p}(x)}_{\begin{array}{c}
\text { particular } \\
\text { solution } \\
\text { of }[*]
\end{array}}
$$

where $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solutions of the homogeneous equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

and $y_{p}(x)$ is any particular solution of $[*]$.

General solution General solution Particular solution of non homogeneous $=$ of homogeneous t of non homogeneous ODE ODE

$$
\uparrow \quad \jmath O D E
$$

(will learn techniques for finding both)

Rem: Every concept \& theorem in this section (for 2nd-order) also works for linear ODES of order $n=3$ and higher.

Techniques for linear 2nd-order homogeneous ODE w) constant coefficients

Consider ODE $a y^{\prime \prime}+b y^{\prime}+c y=0$

Method for solving this ODE:
Step 1 Find the roots of the associated characteristic equation $a r^{2}+b r+c=0$:

Step 2

$$
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

(a) If the characteristic equation has two distinct real roots r_{1}, r_{2}, then $e^{r_{1} x}$ and $e^{r_{2} x}$ are two linearly independent solutions,
so a general solution is $y(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}, c_{1}, c_{2} \in \mathbb{R}$
(b) If the characteristic equation has one real root $r_{1} w /$ multiplicity 2 (ex $\begin{aligned} & r^{2}-10 r+25=0 \\ & (r-5)^{2}=0\end{aligned}$ has one real root 5 w/ multiplicity ${ }^{2}$) then $e^{r_{1} x}$ and $x e^{r_{1} x}$ are two linearly independent solutions,
so a general solution is $y(x)=c_{1} e^{r_{1} x}+c_{2} x e^{r_{1} x}$

$$
=\left(c_{1}+c_{2} x\right) e^{r_{1} x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

(c) If the characteristic equation has complex roots, then ... STAY TUNED

Ex: ODE $y^{\prime \prime}+2 y^{\prime}=0$
Step 1 The characteristic equation is $r^{2}+2 r=0$

$$
r(r+2)=0
$$

Two distinct real roots 0 and -2

Step 2 A general solution is

$$
\begin{aligned}
y(x) & =c_{1} e^{0 x}+c_{2} e^{-2 x} \\
& =c_{1}+c_{2} e^{-2 x}, \quad c_{1}, c_{2} \in \mathbb{R}
\end{aligned}
$$

Ex IVP $\quad y^{\prime \prime}+2 y^{\prime}+y=0, \quad y(0)=5, \quad y^{\prime}(0)=-3$
Step 1 The characteristic equation is $r^{2}+2 r+1=0$

$$
(r+1)^{2}=0
$$

Single real root -1 with multiplicity 2
Step 2 A general solution is

$$
y(x)=c_{1} e^{-x}+c_{2} x e^{-x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Step 3 Impose the initial conditions

$$
\begin{aligned}
5 & =y(0)=c_{1} e^{0}+c_{2} 0=c_{1} \quad \text { so } c_{1}=5 \\
y^{\prime}(x) & =-c_{1} e^{-x}+\underbrace{c_{2} e^{-x}-c_{2} x e^{-x}}_{\text {product rule }} \\
-3=y^{\prime}(0) & =-c_{1} e^{0}+c_{2} e^{0}-c_{2} 0=-5+c_{2} \text { so } c_{2}=2
\end{aligned}
$$

The (particular) solution of the IVP is $y(x)=5 e^{-x}+2 x e^{-x}$

