Numerical methods for solving pst order ODEs
Ref: $\operatorname{Sec} 2.4,2.5,2.6$

* Many ODEs $\frac{d y}{d x}=f(x, y)$ are impossible to solve exactly ex: $\frac{d y}{d x}=e^{-x^{2}}$
* Instead of finding the solution function $y(x)$, approximate its values $y_{1} \approx y\left(x_{1}\right), y_{2} \approx y\left(x_{2}\right), y_{3} \approx y\left(x_{3}\right) \ldots$ at some values $x_{1}, x_{2}, x_{3}, \ldots$
(The idea is similar to sketching an approximate solution curve in a slope field using only the short line segments

FIGURE 2.4.1. The first few steps in approximating a solution curve.

2.4 Numerical Approximation: Euler's Method

Euler's method
Consider an Initial Value Problem $\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$

Choose a step size h

$$
\begin{array}{cl}
\text { Ko, given } & \text { Yo, given } \\
\begin{array}{cl}
x_{1}=x_{0}+h & y_{1}=y_{0}+h \cdot f\left(x_{0}, y_{0}\right) \\
x_{2}=x_{1}+h & y_{2}=y_{1}+h \cdot f\left(x_{1}, y_{1}\right) \\
x_{3}=x_{2}+h & y_{3}=y_{2}+h \cdot f\left(x_{2}, y_{2}\right) \\
\vdots & \vdots \\
x_{n+1}=x_{n}+h, & y_{n+1}=y_{n}+h \cdot \underbrace{\vdots}_{\begin{array}{c}
\text { slope at } \\
\text { the previous } \\
\text { point }
\end{array}} \\
\vdots & \vdots
\end{array}
\end{array}
$$

FIGURE 2.4.2. The step from $\left(x_{n}, y_{n}\right)$ to $\left(x_{n+1}, y_{n+1}\right)$.

Example Apply Euler's method to approximate the solution of the initial value problem
$\frac{d y}{d x}=x+y, \quad y(0)=1 \quad$ (The oDE is linear \& we can solve it: $y(x)=2 e^{x}-x-1$)

Choose step size $h=0.2$ (like choosing density value in Geogebra slope field plotter)

$$
\begin{array}{ll}
x_{0}=0 \text { (given) } & y\left(x_{0}\right)=y_{0}=1 \text { (given) } \\
x_{1}=x_{0}+0.2=0.2 & y\left(x_{1}\right) \approx y_{1}=y_{0}+0.2 f\left(x_{0}, y_{0}\right)=1+0.2 \cdot(0+1)=1.2 \\
x_{2}=x_{1}+0.2=0.4 & y\left(x_{2}\right) \approx y_{2}=y_{1}+0.2 f\left(x_{1}, y_{1}\right)=1.2+0.2(0.2+1.2)=1.48 \\
x_{3}=x_{2}+0.2=0.6 & y\left(x_{3}\right) \approx y_{3}=y_{2}+0.2 f\left(x_{2}, y_{2}\right)=1.48+0.2(0.4+1.48)=1.856 \\
x_{4}=x_{3}+0.2=0.8 & y\left(x_{4}\right) \approx y_{4}=y_{3}+0.2 f\left(x_{3}, y_{3}\right)=1.856+0.2(0.6+1.856)=2.3472 \\
x_{5}=x_{4}+0.2=1 & y\left(x_{5}\right) \approx y_{5}=y_{4}+0.2 f\left(x_{4}, y_{4}\right)=2.3472+0.2(0.8+2.3472)=2.97664
\end{array}
$$

* Our approximation for $y(1)$ is $y_{5}=2.97664$
* But the actual value of $y[1)$ is $2 e^{1}-1-1 \approx 3.4366$, so this approximation with $h=0.2$ is not very good.
* With step size $h=0.1$, we would get $y_{10}=3.1875$
* With step size $h=0.001$, we would get $y_{1000}=3.4338$
much better, but this requires 1000 Steps!

Local and Cumulative Errors
These make the approximation $y\left(x_{n}\right) \approx y_{n}$ unreliable when x_{n} is not sufficiently close to x_{0}

Cumulative error
After the first step,
we are not starting at the actual point $\left(x_{1}, y\left(x_{1}\right)\right)$ but at the approximation $\left(x_{1}, y_{1}\right)$, and so on.

Round off error:
In the example, we could have written $y_{3}=1.86$ instead of $y_{3}=1.856$.
This would impact the computation of y_{4}, then y_{5}.
2.5 A Closer Look at the Euler Method

THEOREM 1 The Error in the Euler Method
Suppose that the initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

has a unique solution $y(x)$ on the closed interval $[a, b]$ with $a=x_{0}$, and assume that $y(x)$ has a continuous second derivative on $[a, b]$. (This would follow from the assumption that f, f_{x}, and f_{y} are all continuous for $a \leqq x \leqq b$ and $c \leqq$
$y \leqq d$, where $c \leqq y(x) \leqq d$ for all x in $[a, b]$.) Then there exists a constant C such that the following is true: If the approximations $y_{1}, y_{2}, y_{3}, \ldots, y_{k}$ to the actual values $y\left(x_{1}\right), y\left(x_{2}\right), y\left(x_{3}\right), \ldots, y\left(x_{k}\right)$ at points of $[a, b]$ are computed using Euler's method with step size $h>0$, then

$$
\left|y_{n}-y\left(x_{n}\right)\right| \leqq C h
$$

for each $n=1,2,3, \ldots, k$.
Upshot of Thm: * If the IVP $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$ is "nice"
(unique solution, and $f \&$ its derivatives are continuous), then there exists C such that $\left|y_{n}-y\left(x_{n}\right)\right| \leqslant C h$

* That is, if we replace h by $\frac{h}{2}$, we expect the error to be divided by 2 .

Euler's method
Given $\operatorname{IVP} \frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$

Approximating the slope of the solution curve $y(x)$ in the interval $\left[x_{n}, x_{n+1}\right]$ by $f\left(x_{n}, y_{n}\right)$, the slope at the starting point, gives big errors.

Improved Euler's method

I dea:
Instead of using the slope at the starting point, take the average between the slope at the starting point $\left(x_{n}, y_{n}\right)$ and the slope at the predicted final point.

Improved Euler's method

Given: $\operatorname{IVP} \frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$

* Fix a step size h
* Suppose we have computed $\left(x_{n}, y_{n}\right)$. $x_{n+1}=x_{n}+h$ (same as before)

To compute y_{n+1}, do:

$$
\begin{aligned}
k_{1} & =f\left(x_{n}, y_{n}\right) \\
u_{n+1} & =y_{n}+h \cdot k_{1} \\
k_{2} & =f\left(x_{n+1}, u_{n+1}\right) \\
y_{n+1} & =y_{n}+h \cdot \frac{1}{2}\left(k_{1}+k_{2}\right)
\end{aligned}
$$

u_{n+1} is the predicted y value using original Euler's method average of slopes
To perform the Improved Euler's method: at the starting point and at "Euler point" Start at $\left(x_{0}, y_{0}\right)$ and perform the iterative formula
until we get to the desired x value.
Cumulative error in Improved Euler's method:

* If the $\operatorname{IVP} \frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$ is nice, then $\left|y\left(x_{n}\right)-y_{n}\right| \leqq C h^{2}$,
* If we replace h by $\frac{h}{2}$, we expect the error to be divided by 2^{2}.

Same example $\operatorname{IVP} \frac{d y}{d x}=x+y, \quad y(0)=1$
(The ODE is linear \& we can find the exact solution: $y(x)=2 e^{x}-x-1$)
Choose step size $h=0.2$

$$
u_{n+1}=y_{n}+h \cdot\left(x_{n}+y_{n}\right)
$$

$$
\begin{aligned}
& x_{0}=0 \\
& y_{0}=1 \\
& y_{n+1}=y_{n}+h \cdot \frac{1}{2}\left[\left(x_{n}+y_{n}\right)+\left(x_{n+1}+u_{n+1}\right)\right] \\
& x_{1}=x_{0}+0.2=0.2 \\
& u_{1}=y_{0}+0.2 f\left(x_{0}, y_{0}\right) \\
& =1+0.2(0+1) \\
& =1.2 \\
& y_{1}=y_{0}+0.2 \frac{f\left(x_{0}, y_{0}\right)+f\left(x_{1}, u_{1}\right)}{2} \\
& =1+0.2 \frac{(0+1)+(0.2+1.2)}{2} \\
& =1.24 \\
& x_{2}=x_{1}+0.2=0.4 \\
& u_{2}=y_{1}+0.2 f\left(x_{1}, y_{1}\right)=1.24+0.2(0.2+1.24) \\
& =1.528 \\
& y_{2}=y_{1}+0.2 \frac{f\left(x_{1}, y_{1}\right)+f\left(x_{2}, u_{2}\right)}{2} \\
& =y_{1}+0.2 \frac{(0.2+1.24)+(0.4+1.528)}{2} \\
& =1.5768
\end{aligned}
$$

$$
\begin{array}{ll}
x_{3}=x_{2}+0.2=0.6 & u_{3}=1.5768+0.2(0.4+1.5768)=1.97216 \\
y_{3}=1.5768+0.2 \frac{(0.4+1.5768)+(0.6+1.97216)}{2}=2.031696 \\
x_{4}=x_{3}+0.2=0.8 & u_{4}=2.5580352 \\
y_{4}=2.63066912 \\
x_{5}=x_{4}+0.2=1 & u_{5}=3.316802944 \\
y_{5}=3.405416326 \approx y\left(x_{5}\right)=y(1)=\underbrace{2 e^{1}-1-1}_{\text {actual value }} \text { (close to 3.4366) }
\end{array}
$$

The improved Euler's method gives better approximation than the original Euler's method with the same $h=0.2$.
$y(1) \approx 2.97664$ using the original Euler's method.
Rem
Indeed, the improved Euler method with $h=0.1$ is more accurate (in this example) than the original Euler method with $h=0.005$. The latter requires 200 evaluations of the function $f(x, y)$, but the former requires only 20 such evaluations, so in this case the improved Euler method yields greater accuracy with only about one-tenth the work.
2.6 The Runge-Kutta Method

Idea: Instead using line segments, use integrals.

Given: IVP $\quad \frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$
Fundamental Theorem of Calculus

$$
y\left(x_{n+1}\right)-y\left(x_{n}\right)=\int_{x_{n}}^{x_{n+1}} y^{\prime}(x) d x=\int_{x_{n}}^{x_{n}+h} y^{\prime}(x) d x
$$

Definite integrals $\int_{a}^{b} g(x) d x$ can be approximated numerically,
(ex: in Calc 2 or 3, use a partial sum of an infinite series)
Simpson's rule

$$
\int_{a}^{b} g(x) d x \approx \frac{b-a}{b}\left[g(a)+4 g\left(\frac{a+b}{2}\right)+g(b)\right]
$$

Applying Simpson's rule, we get

$$
\begin{aligned}
& y\left(x_{n+1}\right)-y\left(x_{n}\right)=\int_{x_{n}}^{x_{n+1}} y^{\prime}(x) d x=\int_{x_{n}}^{x_{n}+h} y^{\prime}(x) d x \\
& \int_{S} \int_{\text {S }} \\
& y_{n+1} \quad y_{n} \\
& \approx \frac{h}{6}\left[y^{\prime}\left(x_{n}\right)+4 y^{\prime}\left(x_{n}+\frac{h}{2}\right)+y^{\prime}\left(x_{n+1}\right)\right]
\end{aligned}
$$

We split into two because we'll use different approximations
Hence we want to define y_{n+1} so that

$$
y_{n+1} \approx y_{n}+\frac{h}{6}[\underbrace{y^{\prime}\left(x_{n}\right)}_{\boldsymbol{K S}_{K_{1}}}+\underbrace{2 y^{\prime}\left(x_{n}+\frac{h}{2}\right)}_{\mathbf{K}_{2}}+\underbrace{2}_{\boldsymbol{K}_{\mathbf{K}_{3}}^{2 y^{\prime}\left(x_{n}+\frac{h}{2}\right)}}+\underbrace{y^{\prime}\left(x_{n+1}\right)}_{\boldsymbol{K}_{4}}]
$$

We will compute the approximations $k_{1}, K_{2}, K_{3}, K_{4}$ as follows:
Fix a step h.
starting from $\left(x_{n}, y_{n}\right)$:
$x_{n+1}=x_{n}+h$
(like usual)

$$
k_{1}=f\left(x_{n}, y_{n}\right) \quad \text { (Euler's method) slope at }\left(x_{n}, y_{n}\right)
$$

$$
k_{2}=f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h k_{1}\right)
$$

like Euler's method w/ step $\frac{h}{2}$: Start at $\left(x_{n}, y_{n}\right)$, then move along line segment w/ slope $f\left(x_{n}, y_{n}\right)=k_{1}$

$$
k_{3}=f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h k_{2}\right)
$$

like improved Euler's method w/ step $\frac{h}{2}$: move along line segment w/ "improved" slope k_{2}.

$$
k_{4}=f(\underbrace{x_{n+1}}_{x_{n}+h}, y_{n}+h k_{3})
$$

Euler's method step w/ (improved) slope k_{3}
$*$ Define $y_{n+1}=y_{n}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)$
Rem Each of $k_{1}, k_{2}, k_{3}, k_{4}$ can be seen as an "improved" slope, and we take the average.

This is often called "RK 4"

Cumulative error in Runge-Kutta (4) method:

* If the IVP $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$ is nice, then $\left|y\left(x_{n}\right)-y_{n}\right| \leqq C h^{4}$,
* If we replace h by $\frac{h}{2}$, we expect the error to be divided by 2^{4}.

Same example $\operatorname{IVP} \frac{d y}{d x}=x+y, \quad y(0)=1$
(The ODE is linear \& we can find the exact solution: $y(x)=2 e^{x}-x-1$) Choose step size $h=0.5$ (bigger than before)

$$
\begin{array}{ll}
x_{0}=0 & y_{0}=1 \\
x_{1}=x_{0}+0.5=0.5 & k_{1}=0+1=1, \\
k_{2} & =(0+0.25)+(1+(0.25) \cdot(1))=1.5, \\
k_{3} & =(0+0.25)+(1+(0.25) \cdot(1.5))=1.625, \\
k_{4} & =(0.5)+(1+(0.5) \cdot(1.625))=2.3125, \\
y_{1} & =1+\frac{0.5}{6}[1+2 \cdot(1.5)+2 \cdot(1.625)+2.3125] \approx 1.7969 . \\
x_{2}=x_{1}+0.5=1 & k_{1}=f\left(x_{1}, y_{1}\right)=0.5+1.7969=2.2969 \\
k_{2} & =f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{h}{2} k_{1}\right) \\
k_{3} & =f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{h}{2} k_{2}\right) \\
k_{4} & =f\left(x_{2}, y_{1}+h k_{3}\right) \\
y_{2} & =y_{1}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
y_{2} & \approx 3.4347 .
\end{array}
$$

The actual value $y\left(x_{2}\right)=y(1)$ is close to 3.4366 .
The RK 4 method w step $h=0.5$ is better than th original Euler's method w/ step 0.2 (2.97664) \& Improved Euler's method w/ step 0.2 (3.4054).

