Sec 1.5 Linear first-order equations
Application: mixture problems
Example 1
A 50 L tank initially contains 30 kg of salt dissolved in 40 L of water. A mixture containing $0.25 \mathrm{~kg} / \mathrm{L}$ of salt flows into the tank at $3 \mathrm{~L} / \mathrm{sec}$ \& the mixture flows out of the tank at $2 \mathrm{~L} / \mathrm{sec}$. How much salt does the tank contain when it is full?

FIGURE 1.5.4. The single-tank mixture problem.

$$
\begin{aligned}
& V(t) \text { : volume of liquid }(L) \\
& x(t) \text { : amour of salt }(\mathrm{kg}) \\
& x(0)=30 \\
& V(t)=40+(3-2) t \\
& \text { initial rate of rate of } \\
& \text { volume inflow outflow }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& \frac{d x}{d t}= \text { Concentration. inflow- Concentration. outflow } \\
& \text { of salt in } \\
& \text { incoming rate of salt rate } \\
& \text { liquid }
\end{aligned} \\
& \frac{d x}{d t}=0.25 \mathrm{~g} / \mathrm{L} \quad 3 L / \mathrm{sec}-\frac{x(t) g}{V(t) L} \quad 2 L / \mathrm{sec}
\end{aligned}
$$

$$
\frac{d x}{d t}=(0.25) 3-\frac{x(t)}{40+t} 2
$$

$\frac{d x}{d t}+\underbrace{\frac{2}{40+t}}_{P(t)} \times(t)=\underbrace{0.75}_{Q(t)}$ is a linear 1st-order ODE.
We can solve it using the Integrating Factor method.

Step 1 Compute the integrating factor

$$
\begin{aligned}
& \int P(t) d t=\int \frac{2}{40+t} d t=2 \ln |40+t|=2 \ln (40+t) \\
& 40+t>0 \\
& e^{\int P(t) d t}=e^{2 \ln (40+t)}=e^{\ln \left[(40+t)^{2}\right]}=(40+t)^{2}
\end{aligned}
$$

Step 2 Multiply both sides by $(40+t)^{2}$

$$
\begin{aligned}
& (40+t)^{2} \frac{d x}{d t}+(40+t)^{2} \frac{2}{40+t} \times(t)=(40+t)^{2} 0.75 \\
& (40+t)^{2} \frac{d x}{d t}+(40+t) 2 \times(t)=(40+t)^{2} 0.75 \\
& \frac{d}{d x}\left[(40+t)^{2} x(t)\right]
\end{aligned}
$$

Step 3 Recognize LHS as a derivative

Step 4 Integrate both sides

$$
\begin{aligned}
(40+t)^{2} \times(t) & =\int 0.75(40+t)^{2} d t+C \\
& =0.75 \frac{(40+t)^{3}}{3}+C \\
& =0.25(40+t)^{3}+C
\end{aligned}
$$

Step 5 Solve for $x(t)$ to get explicit general solution

$$
x(t)=0.25(40+t)+\frac{C}{(40+t)^{2}}
$$

Step 6 Impose initial condition $x(0)=30$

$$
\begin{aligned}
30=x(0) & =0.25(40+0)+\frac{C}{(40+0)^{2}} \\
30 & =10+\frac{C}{1600} \\
20 & =\frac{C}{1600} \\
32000 & =C
\end{aligned}
$$

Then $x(t)=0.25(40+t)+\frac{32000}{(40+t)^{2}}$
is the particular solution to

$$
\frac{d x}{d t}+\underbrace{\frac{2}{40+t}}_{P(t)} x(t)=\underbrace{0.75}_{Q(t)}, X(0)=30
$$

At what time is the tank full?
Set $V(t)=50$ because the tank's capacity is 50 L

$$
40+t=50
$$

After $\quad t=10$ secs is when the tank is full
Amount of salt at 10 sec is
$x(10)=0.25(40+10)+\frac{32000}{50^{2}} \mathrm{~kg}$

$$
\approx 25.3 \mathrm{~kg}
$$

Example 2
38. Consider the cascade of two tanks shown in Fig. 1.5.5, with $V_{1}=100(\mathrm{gal})$ and $V_{2}=200(\mathrm{gal})$ the volumes of brine in the two tanks. Each tank also initially contains 50 lb of salt. The three flow rates indicated in the figure are each $5 \mathrm{gal} / \mathrm{min}$, with pure water flowing into tank 1. (a) Find the amount $x(t)$ of salt in tank 1 at time t. (b) Suppose that $y(t)$ is the amount of salt in tank 2 at time t. Show first that

$$
\frac{d y}{d t}=\frac{5 x}{100}-\frac{5 y}{200},
$$

and then solve for $y(t)$, using the function $x(t)$ found in part (a). (c) Finally, find the maximum amount of salt ever in tank 2.

FIGURE 1.5.5. A cascade of two tanks.
a) Find $x(t)$: salt in tank 1 at minute t

$$
\frac{d x}{d t} \frac{\mathrm{lb}}{\min }={\underset{4}{\text { pure }}}_{0} \quad-\frac{x(t) \mathrm{lb}}{100 \mathrm{gal}} \quad 5 \frac{\mathrm{gal}}{\mathrm{gin}}
$$

flows in
The ODE is $\frac{d x}{d t}+\underbrace{\frac{5}{100}}_{P(t)=\frac{1}{20}} x(t)=\underbrace{0}_{Q(t)=0}$
which is a linear 1st-order ODE
Step 1: Integrating factor is $e^{\int \frac{1}{20} d t}=e^{\frac{t}{20}}$
Step 2: Multiply both sides of ODE by the integrating factor

$$
e^{\frac{t}{20}} \frac{d x}{d t}+e^{\frac{t}{20}} \frac{1}{20} x(t)=0
$$

Step 3: Recognize the LHS as a derivative of a product

$$
\frac{d}{d t}\left[e^{\frac{t}{20}} \times(t)\right]=0
$$

Step 4: Integrate both sides

$$
\begin{aligned}
e^{\frac{t}{20}} \times(t) & =\int 0 d t+C \\
& =C
\end{aligned}
$$

Step 5: Solve for $x(t)$ to get explicit general solution

$$
x(t)=C e^{-\frac{t}{20}}
$$

Step 6: Find particular solution by imposing initial condition $X(0)=50$ because each tank initially contains 5016 of salt

$$
\begin{aligned}
50=x(0) & =c e^{0} \\
50 & =c
\end{aligned}
$$

$x(t)=50 e^{-\frac{t}{20}}$ is salt (in 16 s) in tank 1 at minute t
(b) Let $y(t)$ be the amount of salt in tank 2 at minute t.

$$
\frac{d y}{d t}=\underbrace{\frac{x(t)}{V_{1}} \frac{l b}{\mathrm{gal}} \cdot 5 \mathrm{gal} \mathrm{~min}}_{\text {salt in flow }}-\underbrace{\frac{y(t)}{V_{2}} \frac{l b}{\mathrm{gal}} \cdot 5 \frac{5 \mathrm{gal}}{\mathrm{~min}}}_{\text {salt outflow }}
$$

$$
\begin{aligned}
& \frac{d y}{d t}=\frac{x(t)}{100} 5-\frac{y(t)}{200} 5 \\
& \frac{d y}{d t}=50 e^{-\frac{t}{20}} \frac{5}{100}-y \frac{5}{200} \\
& \frac{d y}{d t}+\underbrace{\frac{1}{40}} y=\underbrace{\frac{5}{2} e^{-\frac{t}{20}}} \\
& P(t)=\frac{1}{40}
\end{aligned}
$$

is a linear 1st-order ODE

Step 1 Integrating factor is $e^{\int \frac{1}{40} d t}=e^{\frac{1}{40} t}$
step 2 Multiply both sides by the integrating factor

$$
e^{\frac{1}{40} t} \frac{d y}{d t}+e^{\frac{1}{40} t} \frac{1}{40} y=e^{\frac{1}{40} t} \frac{5}{2} e^{-\frac{t}{20}}
$$

Step 3

$$
\frac{d}{d x}\left[e^{\frac{1}{40} t} y(t)\right]=\frac{5}{2} e^{-\frac{t}{40}}
$$

Step 4 Integrate both sides

$$
\begin{aligned}
e^{\frac{1}{40} t} y(t) & =\int \frac{5}{2} e^{-\frac{t}{40}} d t+C \\
& =\frac{5}{2} \frac{e^{-\frac{t}{40}}}{-\frac{1}{40}}+C \\
& =-40 \frac{5}{2} e^{-\frac{t}{40}}+C \\
& =-100 e^{-\frac{t}{40}}+C
\end{aligned}
$$

Step 5 Get explicit general solution $y(t)$

$$
\begin{aligned}
& y(t)=-100 e^{-\frac{t}{40}} e^{-\frac{1}{40} t}+C e^{-\frac{1}{40} t} \\
& y(t)=-100 e^{-\frac{t}{20}}+C e^{-\frac{1}{40} t}
\end{aligned}
$$

Step 6 Get particular solution by imposing
initial condition $y(0)=50$:

$$
\begin{aligned}
50=y(0) & =-100 e^{0}+c e^{0} \\
& =-100+c \\
50 & \\
150 & =c
\end{aligned}
$$

So $y(t)=-100 e^{-\frac{t}{20}}+150 e^{-\frac{1}{40} t}$
amount of salt (lbs) at minute t. Sanity check: verify ${ }^{4}$ is so when $t=0$
(c) Find the maxionum amount of salt ever in tank 2 .

Maximize $y(t)$ for t in $[0, \infty)$.
Find critical points t (where $y^{\prime}(t)=0$ or $y^{\prime}(t)$ doesnt exist):

$$
\begin{aligned}
& y^{\prime}(t)=-100\left(-\frac{1}{20}\right) e^{-\frac{t}{20}}+150\left(-\frac{1}{40}\right) e^{-\frac{1}{40} t} \\
& y^{\prime}(t)=5 e^{-\frac{t}{20}}-\frac{15}{4} e^{-\frac{t}{40}}
\end{aligned}
$$

Set $y^{\prime}(t)=0$:

$$
\begin{aligned}
& 0=5 e^{-\frac{t}{20}}-\frac{15}{4} e^{-\frac{t}{40}} \\
& \frac{15}{4} e^{-\frac{t}{40}}=5 e^{-\frac{t}{20}} \\
& \frac{3}{4} e^{-\frac{t}{40}} e^{\frac{t}{20}}=1 \\
& e^{\frac{t}{40}}=\frac{4}{3} \\
& \ln \left(e^{\frac{t}{40}}\right)=\ln \left(\frac{4}{3}\right) \\
& \frac{t}{40}=\ln \left(\frac{4}{3}\right) \\
& t=40 \ln \left(\frac{4}{3}\right)
\end{aligned}
$$

Compare $y(t)$ at $t=0$ and $t=40 \ln \left(\frac{4}{3}\right)$

$$
\begin{aligned}
& y(0)=50 \quad(\text { given }) \\
& y\left(40 \ln \left(\frac{4}{3}\right)\right)=-100 e^{-\frac{t}{20}}+150 e^{-\frac{1}{40} t} \\
&=-100 e^{-\frac{1}{20} 40 \ln \left(\frac{4}{3}\right)}+150 e^{-\frac{1}{40} 40 \ln \left(\frac{4}{3}\right)} \\
&=-100 e^{-2 \ln \left(\frac{4}{3}\right)}+150 e^{-\ln \left(\frac{4}{3}\right)} \\
&=-100 e^{\ln \left[\left(\frac{4}{3}\right)^{-2}\right]}+150 e^{\ln \left(\frac{3}{4}\right)} \\
&=-100 \frac{3^{2}}{4^{2}}+150 \cdot \frac{3}{4} \\
&=-\frac{100}{4} \frac{3^{2}}{4}+50 \frac{3^{2}}{4} \\
&=(-25+50) \frac{3^{2}}{4} \\
&=25 \frac{9}{4} \\
&=50+25 \frac{1}{4}
\end{aligned}
$$

The max value of $y(t)$ is $56 \frac{1}{4} \mathrm{lbs}$.

