Sec 1.5 Linear first-order equations
A linear first-order differential equation is of the form

$$
\begin{aligned}
& \frac{d y}{d x}+P(x) y=Q(x), \quad y\left(x_{0}\right)=y_{0} \quad E x 1: \frac{d y}{d x}=y+\frac{11}{8} e^{-\frac{x}{3}}, y(0)=-1 \\
& \text { functions of } x \uparrow \\
& \text { which are continuous } \\
& \text { on some interval I }
\end{aligned}
$$

Method for finding a solution
Step 1 Compute integrating factor $e^{\int P(x) d x}$

$$
E_{x}: e^{\int-1 d x}=e^{-x}
$$

Step 2 Multiply both sides of ODE by the integrating factor

$$
\begin{aligned}
& e^{\int P(x) d x} \frac{d y}{d x}+e^{\int P(x) d x} P(x) \quad y=e^{\int P(x) d x} Q(x) \\
& E_{x}: \quad e^{-x} \frac{d y}{d x}-e^{-x} y=e^{-x} \frac{11}{8} e^{-\frac{x}{3}}
\end{aligned}
$$

Step 3 Recognize that the LHS is now the derivative of a product with respect to x, using the product rule

$$
\begin{aligned}
& e^{\int P(x) d x} \frac{d y}{d x}+\underbrace{e^{\int P(x) d x} P(x)} y=e^{\int P(x) d x} Q(x) \\
& e^{\int P d x} \cdot \frac{d y(x)}{d x}\left(e^{\int P d x}\right) y(x)
\end{aligned}
$$

So step 2 eq. can be rewritten as

$$
\begin{aligned}
\frac{d}{d x}\left[e^{\int P(x) d x} \cdot y(x)\right] & =e^{\int P(x) d x} Q(x) \\
E_{x}: \frac{d}{d x}\left[e^{-x} \cdot y(x)\right] & =\frac{11}{8} e^{-\frac{4}{3} x}
\end{aligned}
$$

Step 4 Integrate both sides of the equation

$$
\frac{d}{d x}\left[e^{\int P(x) d x} \cdot y(x)\right]=e^{\int P(x) d x} Q(x)
$$

$$
e^{\int P(x) d x} y(x)=\text { integral of } e^{\int P(x) d x} Q(x) \text { plus constant }
$$

Ex: $\quad \frac{d}{d x}\left[e^{-x} \cdot y(x)\right]=\frac{11}{8} e^{-\frac{4}{3} x}$

$$
\begin{aligned}
e^{-x} \cdot y(x) & =\int \frac{11}{8} e^{-\frac{4}{3} x} d x+C \\
& =\frac{11}{8} e^{-\frac{4}{3} x} \frac{1}{\left(-\frac{4}{3}\right)}+C \\
& =\frac{11}{8}\left(-\frac{3}{4}\right) e^{-\frac{4}{3} x}+C \\
& =-\frac{33}{32} e^{-\frac{4}{3} x}+C
\end{aligned}
$$

Step 5 Solve for $y(x)$ and get the general solution
$E_{x}: y(x)=e^{x}\left[-\frac{33}{32} e^{-\frac{4}{3} x}+c\right]$ is the general solution.
Step 6 Find particular solution
(if an initial condition is given)
$E_{x}: \quad y(0)=-1$ is given.
Set $x=0, y=-1$:

$$
\begin{aligned}
-1=y(0) & =e^{0}\left[-\frac{33}{32} e^{-\frac{4}{3} 0}+C\right] \\
-1 & =-\frac{33}{32}+C \\
\frac{1}{32} & =C
\end{aligned}
$$

Particular solution is $y(x)=e^{x}\left[-\frac{33}{32} e^{-\frac{4}{3} x}+\frac{1}{32}\right]$

FIGURE 1.5.1. Slope field and solution curves for
$y^{\prime}=y+\frac{11}{8} e^{-x / 3}$.
\leftarrow This solution $y=e^{x}\left[-\frac{33}{32} e^{-\frac{4}{3} x}\right]$ is called critical because it "separates" solutions with very different behaviors at $+\infty$ Cgrowing rapidly in the positive direction, or growing rapidly in the negative direction).

Theorem
(Existence \& uniqueness of solutions of linear first order equations) If the functions $P(x)$ and $Q(x)$ are continuous on the open interval I containing the point x_{0}, then the initial value problem IVP

$$
\frac{d y}{d x}+P(x) y=Q(x), \quad y\left(x_{0}\right)=y_{0}
$$

has a unique solution on I.

To find the solution, perform steps 1-6 described above.

Rem 1 The theorem guarantees that the solution is defined on the entire interval I, in contrast to the Existence \& uniqueness theorem (in Sec 1.3) for ODE $\frac{d y}{d x}=f(x, y)$

Rem 2 The theorem tells us that every solution is included in the general solution (step 5 in the method). So a linear first-order differential equation has no singular solution.
recall: a solution is singular if it's not included in the general solution

Example 2: $\left(x^{2}-1\right) \frac{d y}{d x}+3 x y=6 x, \quad y(\sqrt{2})=0$
Ans Step 0 Put into $\frac{d y}{d x}+P(x) y=Q(x)$ form:
We will work with this new (different)

$$
\frac{d y}{d x}+\underbrace{\frac{3 x}{x^{2}-1}}_{P(x)} y=\underbrace{\frac{6 x}{x^{2}-1}}_{Q(x)}, y(\sqrt{2})=0
$$

* $P(x)$ and $Q(x)$ are continuous at every number in \mathbb{R} except 1 and -1 , that is, at $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$.

Since $x_{0}=\sqrt{2} \in(1, \infty)$, the Existence \& Uniqueness solution theorem for linear ist-order ODE guarantees that there is exactly one solution $y(x)$ in the interval $I=(1, \infty)$ such that $y(\sqrt{2})=0$.

To find this solution, use the method above, steps 1-6.
Step 1 Compute the integrating factor

$$
\begin{array}{rlr}
\int P(x) d x & =\int \frac{3 x}{x^{2}-1} d x \quad \begin{array}{r}
u=x^{2}-1 \\
d u=2 x \\
\frac{1}{2} d u=x d x
\end{array} \\
& =\int 3 \frac{1}{u} \frac{1}{2} d u \quad \begin{aligned}
\text { because in } I=(1, \infty) \\
x^{2}-1>0
\end{aligned} \\
& =\frac{3}{2} \ln |u| \\
& =\frac{3}{2} \ln \left|x^{2}-1\right| \quad \\
& =\frac{3}{2} \ln \left(x^{2}-1\right) \quad
\end{array}
$$

Integrating factor is $e^{\int P(x) d x}=e^{\frac{3}{2} \ln \left(x^{2}-1\right)}$

$$
\begin{aligned}
& =e^{\ln \left[\left(x^{2}-1\right)^{\frac{3}{2}}\right]} \\
& =\left(x^{2}-1\right)^{\frac{3}{2}}
\end{aligned}
$$

Step 2 Multiply both sides by the integrating factor

$$
\left(x^{2}-1\right)^{\frac{3}{2}} \frac{d y}{d x}+\left(x^{2}-1\right)^{\frac{3}{2}} \frac{3 x}{x^{2}-1} y=\left(x^{2}-1\right)^{\frac{3}{2}} \frac{6 x}{x^{2}-1}
$$

$$
\underbrace{\left(x^{2}-1\right)^{\frac{3}{2}} \frac{d y}{d x}+\left(x^{2}-1\right)^{\frac{1}{2}} 3 x y}_{\frac{d}{d x}\left[\left(x^{2}-1\right)^{\frac{3}{2}} y(x)\right]}=\left(x^{2}-1\right)^{\frac{1}{2}} 6 x
$$

Step 3 Recognize the LHS as a derivative
Step 4 Integrate both sides

$$
\begin{aligned}
\left(x^{2}-1\right)^{\frac{3}{2}} y(x) & =\int\left(x^{2}-1\right)^{\frac{1}{2}} 6 x d x+C \quad \begin{array}{r}
u=x^{2}-1 \\
d u=2 x d x \\
\frac{1}{2} d u=x d x
\end{array} \\
& =\int u^{\frac{1}{2}} 6 \frac{1}{2} d u+C \\
& =3 \frac{u^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}+C \\
& =2 u^{\frac{3}{2}}+C \\
& =2\left(x^{2}-1\right)^{\frac{3}{2}}+C
\end{aligned}
$$

Step 5 Solve for $y(x)$:

$$
\begin{aligned}
& y(x)=\frac{2\left(x^{2}-1\right)^{\frac{3}{2}}}{\left(x^{2}-1\right)^{\frac{3}{2}}}+\frac{C}{\left(x^{2}-1\right)^{\frac{3}{2}}} \\
& y(x)=2+\frac{C}{\left(x^{2}-1\right)^{\frac{3}{2}}} \text { for } x \in(1, \infty), C \in \mathbb{R}
\end{aligned}
$$

Step 6 Impose the initial condition $y(\sqrt{2})=0$:
Set $x=\sqrt{2}, y=0$

$$
\begin{aligned}
0=y(\sqrt{2}) & =2+\frac{C}{(2-1)^{\frac{3}{2}}} \\
0 & =2+C \\
-2 & =C
\end{aligned}
$$

The unique solution of the IVP $\frac{d y}{d x}+\frac{3 x}{x^{2}-1} y=\frac{6 x}{x^{2}-1}, y(\sqrt{2})=0$ is

$$
y(x)=2-\frac{2}{\left(x^{2}-1\right)^{\frac{3}{2}}} \text { for } x \text { in }(1, \infty)
$$

