Sec 1.4 (a) Separable equations
(b) Applications
(b) Applications: Useful equations that can be solved by separation of variables

Natural growth / decay ODE

$$
\begin{array}{ll}
\frac{d x}{d t}=k x, & x(t)>0 \\
\text { where } k \in \mathbb{R} \text { is a fixed constant }
\end{array}
$$

Growth rate of a quantity $x(t)$ is proportional to $x(t)$
Here our variables are x, t
E.g. $\frac{d x}{d t}=0.1 x$ is a natural growth ODE.

Can solve using separation of variables:
Step 1 Separation by variables

$$
\underbrace{\frac{1}{x} d x}_{\text {only } x}=\underbrace{k d t}_{\text {only } t}
$$

Step 2 Integrate both sides to find implicit general solution

$$
\begin{aligned}
\int \frac{1}{x} d x & =\int k d t \\
\ln |x| & =k t+C \\
\ln (x) & =k t+C \quad \text { since } x(t)>0 \text { by assumption }
\end{aligned}
$$

Step 3 Find an explicit solution.

$$
e^{\ln (x)}=e^{k t+c}
$$

$$
x(t)=e^{k t} e^{c}, D>0
$$

$\begin{aligned} & \text { General } \\ & \text { solution }\end{aligned} x(t)=D e^{k t}, D>0$
Rem Because of this we call $\frac{d x}{d t}=k x$ the exponential equation/ $\begin{array}{r}\text { natural growth equation }\end{array}$

Step 4 If we impose initial condition $x(0)=x_{0}$, then we can find D :

$$
\begin{array}{r}
\text { Set } t=0, x=x_{0}= \\
x(0)=D e^{k 0}=x_{0} \\
D 1=x_{0}
\end{array}
$$

So the solution of the IVP $\frac{d x}{d t}=k x, x(0)=x_{0}$ is $\quad x(t)=x_{0} e^{k t}$.

FIGURE 1.4.7. Natural growth.

FIGURE 1.4.8. Natural decay.

Rem If the value for k is not given, then
we can compute k from knowing the
value of $x(t)$ for some t.

Compound interest
$A(t)$: dollars in a high-yield savings account at year t with annual interest rate $10 \%=\frac{1}{10}$.

Assume the interest is compounded continuously
during a short time interval Δt, the amount of interest added to the account is approximately $\frac{1}{10} A(t)(\Delta t)$.

Then $A(t)$ satisfies the equation $\frac{d A}{d t}=0.1 \mathrm{~A}$

Drug elimination
Extra example
$A(t)$: amount of excess of certain drug in the blood stream Cover the natural level)

In many cases, $A(t)$ satisfies the $O D E$

$$
\begin{aligned}
\frac{d A}{d t}=-\lambda A \quad & \text { excess amount declines at } \\
& \text { a rate proportional to } \\
& \text { current excess amount }
\end{aligned}
$$

$\lambda>0$ is called the elimination constant of the drug

Population growth:
$P(t)$: number of individuals in a population.
β : birth rate, we suppose it to be constant.
δ : death rate, we suppose it to be constant.

Then $\frac{d P}{d t}=\beta P-\delta_{\uparrow} P$ births deaths proportional to P

The rate of change of P at a time t is the number of births minus the number of deaths
$\frac{d P}{d t}=(\underbrace{(\beta-\delta)}_{k} P$ It
It is the exponential equation with $k=\beta-\delta$.

Example: The world's population reached 6 billion persons in mid-1999 and was increasing at that moment at a rate of 212000 persons each day. We assume that natural population growth at this rate continues.

This means that if $P(t)$ is the population (in billions) at time $($ (in years), then $P(t)$ satisfies the natural growth equation for some $k>0$:

$$
P^{\prime}=\frac{d P}{d t}=k P .
$$

First, we can find k : we know that $P(0)=6$ and

$$
P^{\prime}(0)=\underbrace{0.000212}_{\begin{array}{c}
\text { rate of } \\
\text { change } \\
\text { per day }
\end{array}} \cdot \underbrace{365.25}_{\begin{array}{c}
\text { days in } \\
\text { a year }
\end{array}}=\underbrace{0.07743}_{\begin{array}{c}
\text { pate year lour oe } \\
\text { of time) }
\end{array}}
$$

Then from $P^{\prime}(0)=k P(0)$ we deduce that

$$
k=\frac{P^{\prime}(0)}{P(0)}=\frac{0.07743}{6}=0.0129
$$

This means that the world population was growing at the rate of 1.29% annually in 1999.

Then, $\quad P(t)=x_{0} e^{k t}=6 e^{0.0129 t}$.

We can estimate the population in 2050 (then $t=51$ since 1999 is $t=0$):

$$
P(51)=6 e^{0.0129 .51} \approx 11.58 \quad \text { (billion). }
$$

We can also estimate when the population will be 60 billion:

$$
\begin{aligned}
P(t)=6 e^{0.0129 t} & =60 \\
e^{0.0129 t} & =10 \\
0.0129 t & =\ln (10) \\
t & =\frac{\ln (10)}{0.0129} \approx 178 \quad \text { (In the year 2177). }
\end{aligned}
$$

See also example 4 in the textbook.

Cooling and heating
Newton's law of cooling: rate of change of temperature $T(t)$ of an object immersed in a medium of constant temperature A is proportional to the temperature difference $A-T(t)$, ie.

$$
\begin{aligned}
\frac{d T}{d t}= & k(A-T) \\
& k \text { i } \\
& k \text { is a positive constant }
\end{aligned}
$$

Example
A meal, initially at $50^{\circ} \mathrm{F}$, is placed in an oven (pre-heated to $375^{\circ} \mathrm{F}$).
After 75 minutes the temperature of the meal is $125^{\circ} \mathrm{F}$.
When will the meal be $150^{\circ} \mathrm{F}$?

Ans
$T(t)$: temperature of meal after t minutes
So $T(0)=50, T(75)=125$.
A : temperature of the medium (oven), $A=375$.

$$
\text { Note: } \begin{aligned}
\underbrace{T(t)}_{\text {meal temp }} & <\underbrace{A=375}_{\text {oven temp }} \\
\frac{d T}{d t} & =k \underbrace{(375}_{A}-T) \quad \text { due to Newton's law of cooling }
\end{aligned}
$$

Step $1 \& 2 \times 3$ Separation by variables \& integrate both sides

$$
\begin{aligned}
& \& \text { find explicit general solution to } \frac{d T}{d t}=k(375-T) \\
& \int \frac{1}{375-T} d T=\int k d t \\
&-\ln |375-T|=k t+C \\
&-\ln (375-T)=k t+C \text { because } T(t)<375 \\
& e^{\ln (375-T)}= e^{-k t-C} \\
& 375-T=e^{-k t} \underbrace{e^{-c}}_{\text {let } B=e^{-c}} \text { positive for all } C \in \mathbb{R} \\
& 375-B e^{-k t}=T(t)
\end{aligned}
$$

Step 4 Impose initial condition $T(0)=50$ to find B.

$$
\begin{aligned}
& \text { Set } t=0, T=50: \\
& T(0)=375-B e^{-k .0}=50 \\
& 325=B .1
\end{aligned}
$$

Additional step Find k

$$
\begin{aligned}
& \text { We were given } T(75)=125 . \\
& \text { Set } t=75, T=125: \\
& T(75)=375-325 e^{-k 75}=125 \\
& \quad \begin{aligned}
250 & =325 e^{-k 75} \quad \text { (You dort need to simplify) } \\
& \frac{10}{13}=e^{-k 75}
\end{aligned}
\end{aligned}
$$

$$
\ln \frac{10}{13}=-k 75
$$

$$
-\frac{1}{75} \ln \left(\frac{10}{13}\right)=k
$$

$$
\text { So } T(t)=375-325 e^{\frac{1}{75} \ln \left(\frac{10}{13}\right) t}
$$

When will the meal be $150^{\circ} \mathrm{F}$?

$$
\text { Set } T(t)=150
$$

$$
375-325 e^{\frac{1}{75} \ln \left(\frac{10}{13}\right) t}=150
$$

$$
225=325 e^{\frac{1}{75} \ln \left(\frac{10}{13}\right) t}
$$

$$
\frac{9}{13}=e^{\frac{1}{75} \ln \left(\frac{10}{13}\right) t}
$$

$$
\ln \frac{9}{13}=\frac{1}{75} \ln \left(\frac{10}{13}\right) t
$$

$$
75 \frac{\ln \left(\frac{9}{13}\right)}{\ln \left(\frac{10}{13}\right)}=t
$$

about 105 mins
The meal will be $150^{\circ} \mathrm{F}$ after 105 ming.

