- Sec 1.4 (a) Separable equations
 - (b) Applications

(Con't part (a): More caution)

Examples of implicit solutions of an ODE:

- . (1st Ex last time) $\ln |y| = -3x^2 + C$ is an implicit solution of ODE $\frac{dy}{dx} = -6xy$ $\ln |y| + 3 \times^2 - C = 0$
- . (2nd Ex last time) $-\frac{1}{y} = x + C$ is an implicit solution of ODE $\frac{dy}{dx} = y^2$ $-\frac{1}{y}-x-C=0$
- · (wwo3 Prob6) See previous lecture notes $\ln |y-1| - \ln |y+1| = 2x + C$ is an implicit solution of ODE $\frac{dy}{dx} = (y-1)(y+1)$ ln|y-1|-ln|y+1|-2x-C=0

In general, an equation K(x,y)=0 is an implicit solution of an ODE if it is satisfied (on some interval) by some solution y = y(x) of the ODE.

Caution 1 Not every possible (algebraic) solution y = y(x) of

an implicit solution K(x,y) satisfies the same ODE.

Cautionary Example Consider ODE $x + y \frac{dy}{dx} = 0$.

The equation $(y-2x)(x^2+y^2-4)=0$ is an implicit solution to the ODE. K(x,y)

 $y_1(x) = \sqrt{4 - x^2}$, $y_2(x) = \sqrt{4 - x^2}$, $y_3(x) = 2x$ are all (algebraic) solutions to k(x,y) = 0 $x^2 + y_1^2 - 4 = \begin{vmatrix} x^2 + y_2^2 - 4 = \\ x^2 + 4 - x^2 - 4 = 0 \end{vmatrix}$ $x^2 + 4 - x^2 = 0$

BUT, $y_1(x)$ and $y_2(x)$ are solutions to the ODE $x+y \frac{dy}{dx} = 0$

while Y3(x) is NOT a solution to this ODE:

LHS of ODE: $X + Y_3 Y_3' = X + 2 \times \cdot 2 = 5 \times$

RHS of ODE: O

LHS & RHS.

Caution 2 Solutions of an ODE can be gained or lost when multiplied or divided by an algebraic factor.

Cautionary Example Consider ODE (y-2x) y $\frac{dy}{dx} = -x(y-2x)$

· y3(x)= 2x is a solution:

LHS of ODE: $(Y_3 - 2x) Y_3 \frac{d Y_3}{dx} = (2x - 2x) 2x 2 = 0$

RHS of oDE: $-\times (\gamma_3 - 2\chi) = -\times (2x - 2x) = 0$

LHS = RHS

• If we divide both sides of the ODE by (y-2x), we get a different ODE

$$\frac{dy}{dx} = -x$$

The same ODE $x + y \frac{dy}{dx} = 0$ from previous example.

We checked that Y3 (x) = 2x is not a solution to this ODE.

Ex (Webwork WWO3) Prob 6

Find solution to IVP $\frac{dy}{dx} = (y-1)(y+1)$, y(4)=0

See previous lecture notes