Sec 1.4 (a) Separable equations
(b) Applications
(Con't part (a): More caution)
Examples of implicit solutions of an ODE:

- (1st Ex last time)
$\ln |y|=-3 x^{2}+C \quad$ is an implicit solution of ODE $\frac{d y}{d x}=-6 x y$
$\ln |y|+3 x^{2}-C=0$
- (2nd Ex last time)
$-\frac{1}{y}=x+C$ is an implicit solution of ODE $\frac{d y}{d x}=y^{2}$
$-\frac{1}{y}-x-C=0$
- (woos Prob) See previous lecture
$\ln |y-1|-\ln |y+1|=2 x+C$ is an implicit solution of ODE $\frac{d y}{d x}=(y-1)(y+1)$
$\ln |y-1|-\ln |y+1|-2 x-C=0$

In general, an equation $K(x, y)=0$ is an implicit solution of an $O D E$ if it is satisfied (on some interval) by some solution $y=y(x)$ of the $O D E$.

Caution 1 Not every possible (algebraic) solution $y=y(x)$ of an implicit solution $K(x, y)$ satisfies the same $O D E$.

Cautionary Example Consider ODE $x+y \frac{d y}{d x}=0$.
The equation $\underbrace{(y-2 x)\left(x^{2}+y^{2}-4\right)}_{k(x, y)}=0$ is an implicit solution to the $O D E$.
$y_{1}(x)=\sqrt{4-x^{2}}, y_{2}(x)=-\sqrt{4-x^{2}}, y_{3}(x)=2 x$ are all (algebraic) solutions to $k(x, y)=0$

$$
\begin{array}{l|l|l} 
\\
x^{2}+y_{1}^{2}-4= \\
x^{2}+4-x^{2}-4=0 & \mid & x^{2}+y_{2}^{2}-4= \\
x^{2}+4-x^{2}=0 & \begin{array}{l}
y_{3}-2 x= \\
2 x-2 x=0
\end{array}
\end{array}
$$

BUT, $y_{1}(x)$ and $y_{2}(x)$ are solutions to the ODE $x+y \frac{d y}{d x}=0$
while $y_{3}(x)$ is NOT a solution to this ODE:

LHS of ODE: $x+y_{3} y_{3}^{\prime}=x+2 x \cdot 2=5 x$
RHS of ODE: O
LHS $\neq$ RUS.

Caution 2 Solutions of an ODE can be gained or lost when multiplied or divided by an algebraic factor.

Cautionary Example Consider ODE $(y-2 x)$ y $\frac{d y}{d x}=-x(y-2 x)$

- $y_{3}(x)=2 x$ is a solution:

LHS of ODE: $\left(y_{3}-2 x\right) y_{3} \frac{d y_{3}}{d x}=(2 x-2 x) \quad 2 x 2=0$
RHS of ODE: $-x\left(y_{3}-2 x\right)=-x(2 x-2 x)=0$
LHS = RUS

- If we divide both sides of the ODE by $(y-2 x)$, we get a different $O D E$

$$
y \frac{d y}{d x}=-x
$$

The same $O D E \quad x+y \frac{d y}{d x}=0$ from previous example.
We checked that $y_{3}(x)=2 x$ is not a solution to this ODE.

Ex (Webwork wW03) Prob 6
Find solution to $\operatorname{FV} \frac{d y}{d x}=(y-1)(y+1), \quad y(4)=0$ See previous lecture notes

