Review Sec 1.3 wwor Prob 6

1) Fy or the solution that satisfies $y(0)=1$, sketch the solution curve and estimate the following: $y(1) \approx 1$ and $y(-1) \approx 1$

$$
\begin{aligned}
& \text { 2) What are the equilibrium solutions } \\
& \text { Cif any)? } \\
& \text { Ans } y(x)=1 \text { and } y(x)=-1 \\
& \text { Rem: line segments are all horizontal } \\
& \text { (slope } 0 \text {) when } y=1 \text { and } y=-1 \text {. }
\end{aligned}
$$

B Sketch of the slope field of an ODE
3) Sketch the solution such that $y(-1)=0.5$
4) For this solution, what is $\lim _{x \rightarrow \infty} y(x)$? Ans -1
5) For this solution, what is $\lim _{x \rightarrow-\infty} y(x)$? Ans 1

Sec 1.4 (a) Separable equations
(b) Applications
(a) New Method: Separation of variables

Running Example
function only in x
Consider the ODE $\frac{d y}{d x}=\underbrace{-6 x y}=\overbrace{(-6 x)}^{y}$
function
function only in y
of x and y

Step 1 Informally "separate the variables"

$$
\underbrace{\frac{1}{y} d y}_{\text {all the } y^{\prime} s}=\underbrace{-6 x d x}_{\text {all the } x^{\prime} s}
$$

on one side
on the other side

Step 2 Integrate both sides

$$
\begin{aligned}
\int \frac{1}{y} d y & =\int-6 x d x \\
\ln |y|+C_{1} & =-\frac{6 x^{2}}{2}+C_{2} \\
\ln |y| & =-3 x^{2}+\left(C_{2}-C_{1}\right)
\end{aligned}
$$

we only need to write one constant $C=C_{2}-C_{1}$

$$
\ln |y|=-3 x^{2}+C
$$

This is the implicit general
solution of the ODE

FIGURE 1.4.1. Slope field and solution curves for $y^{\prime}=-6 x y$.

Solution curves for a few values of C

Step 3 If possible, find an explicit general solution $y(x)$:
Ex (con't) Take the exponential of both sides

$$
\begin{aligned}
& e^{\ln |y|}=e^{-3 x^{2}+C} \\
& |y|=e^{-3 x^{2}} e^{C} \text {-always positive for } \underbrace{C \in \mathbb{R}}_{\text {meaning: } " C} \text { is a real number" } \\
& y=e^{C} e^{-3 x^{2}} \text { or } y=-e^{C} e^{-3 x^{2}} \\
& \text { Ide. } y(x)= \pm e^{c} e^{-3 x^{2}} \\
& \text { I can write } A:= \pm e^{c} \text {, either positive or negative (not } 0 \text {) } \\
& \text { Ie } y(x)=A e^{-3 x^{2}} \text { where } A \neq 0 \text { explicit general } \begin{array}{c}
\text { solution }
\end{array}
\end{aligned}
$$

Step 4 Impose an initial condition (if it's given), e.g. $y(0)=7$
Ex (con't) $y(0)=A e^{-3.0^{2}}=7$

$$
\begin{aligned}
A \cdot 1 & =7 \\
A & =7
\end{aligned}
$$

The particular solution for the IVP $\frac{d y}{d x}=-6 x y, y(0)=7$ is $y(x)=7 e^{-3 x^{2}}$ Exercise: Can we use the Existence \& Uniqueness Thm (Sec 1.3) to guarantee that this solution is in fact the only solution to this IVP? Yes or No?

Ex: If the initial condition is $y(0)=-4$?
Ans we get the particular solution $y(x)=-4 e^{-3 x^{2}} \rightarrow$

FIGURE 1.4.1. Slope field and solution curves for $y^{\prime}=-6 x y$.

Der
In general, a ist-order ODE $\frac{d y}{d x}=g(x) k(y)=\frac{g(x)}{h(y)}$ is called separable.
Ex Separable equations

1. $\frac{d y}{d x}=y^{2} \quad$ 5. $\frac{d y}{d x}=\frac{4-2 x}{3 y^{2}-5}$
2. $\frac{d y}{d x}=\frac{y}{x^{2}} \quad$ 6. $\frac{d y}{d x}=10+4 x+15 y+6 x y$

$$
=2(5+2 x)+3 y(5+2 x)
$$

3. $\frac{d y}{d x}=\frac{1}{x^{2}}$

$$
=(2+3 y)(5+2 x)
$$

Not separable
7. $\frac{d y}{d x}=y^{2}+x$
8. $\frac{d y}{d x}=\sin (x y)$
4. $\frac{d y}{d x}=e^{3 x+2 y}=e^{3 x} e^{2 y}$
9. $\frac{d y}{d x}+y \cos (x)=5 \cos (x) \Leftrightarrow \frac{d y}{d x}=\cos x(-y+5)$

In general, for separable ODE $\frac{d y}{d x}=\frac{g(x)}{h(y)}$
Step 1 Separate the variables

$$
h(y) d y=g(x) d x
$$

Step 2 Integrate both sides

$$
\int h(y) d y=\int g(x) d x+C
$$

Let $H(y)$ be let $G(x)$ be an antiderivative an antiderivative of $h(x)$ of $g(x)$

Get the implicit general solution of $\frac{d y}{d x}=\frac{g(x)}{h(x)}: H(y)=G(x)+C \quad C \in \mathbb{R}$
Def An equation is called an implicit solution of an ODE if it is satisfied (on some interval) by some solution of the $O D E$.

Downside of separation of variable methods
Issue 1 may miss solutions
ε_{x} (cont)
You can verify $y(x) \equiv 0$ is a solution to the ODE $\frac{d y}{d x}=-6 x y$
(by substitution method from $\sec 1.1$
or by looking at the slope field),
but $y(x)=0$ is not included in the general solution

$$
y(x)=A e^{-3 x^{2}}, A \neq 0 .
$$

Why did we miss this solution?

$$
\text { We turned } \frac{d y}{d x}=-6 x y
$$

$$
\text { into } \frac{1}{y} \frac{d y}{d x}=-6 x
$$

$$
\text { Now y cannot be } 0 \text {. }
$$

$$
\text { So } y(x)=0 \text { is not a solution to } \frac{1}{y} \frac{d y}{d x}=-6 x
$$

Def A singular solution of an ODE is a particular solution which is not contained in a general solution of the $O D E$.

Issue 2 Implicit solutions may be "too large"
$\varepsilon_{x} \left\lvert\, V P \underbrace{\frac{d y}{d x}=y^{2}}_{O D E}\right., y(2)=-1$
Step 1
Separation of variables:

$$
\begin{aligned}
& \frac{1}{y^{2}} \frac{d y}{d x}=1 \\
& \frac{1}{y^{2}} d y=d x
\end{aligned}
$$

Step 2 Integrate both sides:

$$
\begin{array}{ll}
\int \frac{1}{y^{2}} d y=\int d x \\
-\frac{1}{y}=x+C & C \in \mathbb{R}
\end{array}
$$

Step 3 Find an explicit general solution:

$$
y(x)=-\frac{1}{x+c}, \quad \underbrace{c \in \mathbb{R}}
$$

for C any real number
Student's Question:

Do we say $C \neq x$?
Answer No, we say for any real number C

Step 4 Impose the initial condition:
set $x=2, \quad y=-1$

$$
\begin{aligned}
y(2)=-\frac{1}{2+C} & =-1 \\
1 & =2+C \\
C & =-1
\end{aligned}
$$

Then $y(x)=-\frac{1}{x-1}=\frac{1}{1-x}$ not continuous at $x=1$

vertical asymptote at $x=1$

- A solution of a differential equation must be differentiable, and hence continuous.
- So $y(x)=\frac{1}{1-x}$ is a solution to the $\operatorname{IVP} \frac{d y}{d x}=y^{2}, y(2)=-1$ but only in an interval where it is differentiable.
- $y(x)=\frac{1}{1-x}$ is differentiable in $(-\infty, 1)$ and $(1,+\infty)$.
- $y(x)=\frac{1}{1-x}$ is a solution of the IVP on $(1,+\infty)$, but not on $(-\infty, 1)$.
- The method provided a "too large solution" in the sense that we had to restrict the function to an interval where it is differentiable.

Rem - Verify that $y(x)=0$ is a solution to $\frac{d y}{d x}=y^{2}$

- It's not a solution of the form $y(x)=-\frac{1}{x+C}$ for any $c \in \mathbb{R}$, So $y(x)=0$ is an example of a singular solution

BONUS EXAMPLE
Ex (Webwork WW03) Prob 6
Find solution to IVP $\frac{d y}{d x}=(y-1)(y+1), \quad y(4)=0$
Step 1 Separation of variables

$$
\frac{1}{(y-1)(y+1)} d y=d x
$$

Step 2 Integrate both sides \& find implicit general solution

$$
\int \frac{1}{(y-1)(y+1)} d y=\int d x
$$

Partial fraction:

$$
\begin{aligned}
& \frac{1}{(y-1)(y+1)}=\frac{A}{y-1}+\frac{B}{y+1} \\
& 1=A(y+1)+B(y-1) \\
& 0 y+1=(A+B) y+(A-B) \\
&\text { and } \left.\begin{array}{rl}
0=A+B \\
1=A-B
\end{array}\right\} \begin{array}{l}
(\text { do algebra) }
\end{array} \quad A=\frac{1}{2}, B=-\frac{1}{2}
\end{aligned}
$$

So $\frac{1}{(y-1)(y+1)}=\frac{1}{2} \frac{1}{(y-1)}-\frac{1}{2} \frac{1}{(y+1)}$

$$
\begin{aligned}
& \int \frac{1}{2} \frac{1}{(y-1)}-\frac{1}{2} \frac{1}{(y+1)} d y=\int d x \\
& \frac{1}{2} \ln |y-1|-\frac{1}{2} \ln |y+1|=x+C \\
& \ln |y-1|-\ln |y+1|=2 x+D, \underbrace{D \in \mathbb{R}} \text { is a real number }
\end{aligned}
$$

Implicit general solution

Step 3 Find explicit general solution $y(x)$, if possible:

$$
\begin{aligned}
& e^{\ln |y-1|-\ln |y+1|}=e^{2 x+D} \\
& \frac{e^{\ln |y-1|}}{e^{\ln |y+1|}}=e^{2 x+D} \\
& \frac{|y-1|}{|y+1|}=e^{2 x+D} \\
& \left|\frac{y-1}{y+1}\right|=e^{2 x} e^{D} \\
& \frac{y-1}{y+1}= \pm e^{D} e^{2 x} \\
& \text { Let } A= \pm e^{D} \text {, so } A \in \mathbb{R} \backslash\{0\}
\end{aligned}
$$

(This is the same as "A can be any real number except 0 ")

$$
\begin{aligned}
y-1 & =A e^{2 x}(y+1) \\
y-1 & =A e^{2 x} y+A e^{2 x} \\
y-A e^{2 x} y & =1+A e^{2 x} \\
y\left(1-A e^{2 x}\right) & =1+A e^{2 x} \\
y(x) & \left.=\frac{1+A e^{2 x}}{1-A e^{2 x}}, \quad A \in \mathbb{R}\right)\{0\}
\end{aligned}
$$

Explicit general solution
Step 4 Impose initial value: Set $x=4, y=0$

$$
\begin{aligned}
y(4)= & \frac{1+A e^{8}}{1-A e^{8}}=0 \\
& \left.\begin{array}{ll}
1+A e^{8}=0 \\
\text { and } \\
& 1-A e^{8} \neq 0
\end{array}\right\} \cdots A e^{8}=-1 \quad \cdots>
\end{aligned}
$$

$$
y(x)=\frac{1+\left(-e^{-8}\right) e^{2 x}}{1-\left(-e^{-8}\right) e^{2 x}}, \text { multiply by } 1=\frac{e^{8}}{e^{8}}
$$

Solution to the IVP

