Math 3113 Sec 1.3 part a
slope fields \& solution curves
Sec 1.2: $\frac{d y}{d x}=f(x) \quad$ integrate both sides
Now consider ODE

$$
\frac{d y}{d x}=f(x, y)
$$

\longrightarrow a multivariable function
in two variables x, y

$$
\begin{array}{rlr}
y^{\prime}=\frac{1}{e^{x}}+2 y & \frac{d y}{d x}=y & \frac{d y}{d x}=1+y^{2} \\
\frac{d y}{d x}=x+y & \frac{d y}{d x}=\frac{x y}{\cos (x)} & \frac{d y}{d x}=\sqrt{y^{2}-81}
\end{array}
$$

- We cannot simply integrate both sides.
- There is no uniform method for solving this ODE.
- Today: A graphical method for constructing approximate solutions

Example $\quad y^{\prime}=\frac{1}{2} y$

Q: Suppose we found a solution $y(x)$ such that $y(0)=100$. What is the slope of the tangent line to the solution $y(x)$ at $(0,100)$?

A: The slope is $y^{\prime}(0)=\frac{1}{2} 100=50$
Q: What if the solution we found satisfies $y(0)=200$?

A: The slope is $y^{\prime}(0)=\frac{1}{2} 200=100$

At each point (a, b), attach a small line segment w/ slope $f(a, b)=\frac{1}{2} b$.
All these small line segments form a slope field (or direction field d)

- A sketch of the slope field of $\frac{d y}{d x}=\frac{y}{2}$

- Approximate solutions of $y^{\prime}=\frac{y}{2}$ using sketch of the slope field:

solution to Initial Value Problem (IVP)

$$
y^{\prime}=\frac{y}{2}, \quad y(a)=b
$$

Different solutions for different initial values

FIGURE 1.3.2(b) Slope field and solution curves for $y^{\prime}=(0.5) y$.

General method for approximating graphical solutions

- In general, to construct the slope field for ODE $y^{\prime}=f(x, y)$

For each point $(a, b) \ldots$

* compute $y^{\prime}(a)=f(a, b)$
* draw through (a, b) a small line segment $w /$ slope $f(a, b)$.
- Approximate solutions of $y^{\prime}=f(x, y)$ using slope field.
* Choose one point (a, b) and sketch a curve by following the small line segments,
* This curve is a solution to $\frac{d y}{d x}=f(x, y), y(a)=b$.

Example Consider the IVP $y^{\prime}=x-y, \quad y(-4)=4$
Sketch the slope field for $y^{\prime}=x-y$
Construct table of values of $f(x, y)=x-y$

$x \backslash y$	-4	-3	-2	-1	0	1	2	3	4
-4	0	-1	-2	-3	-4	-5	-6	-7	-8
-3	1	0	-1	-2	-3	-4	-5	-6	-7
-2	2	1	0	-1	-2	-3	-4	-5	-6
-1	3	2	1	0	-1	-2	-3	-4	-5
0	4	3	2	1	0	-1	-2	-3	-4
1	5	4	3	2	1	0	-1	-2	-3
2	6	5	4	3	2	1	0	-1	-2
3	7	6	5	4	3	2	1	0	-1
4	8	7	6	5	4	3	2	1	0

The more values
we rake, the more precise the graphical

Solution will be.

FIGURE 1.3.3. Values of the slope $y^{\prime}=x-y$ for $-4 \leq x, y \leq 4$.

Solution such that $y(-4)=4$ Finer sketch

FIGURE 1.3.4. Slope field for $y^{\prime}=x-y$ corresponding to the table of slopes in Fig. 1.3.3.

FIGURE 1.3.5. The solution curve through $(-4,4)$.

FIGURE 1.3.6. Slope field and typical solution curves for $y^{\prime}=x-y$.
$y=x-1$ is a colution such that $y(0)=-1$

Slope field plotter on GeoGebra:

$$
\text { geogebra.org } / m / W 7 d A d g q c
$$

$$
\left.\begin{array}{rl}
\operatorname{Tr} y & \frac{d y}{d x} \\
=x y^{2} \\
\frac{d y}{d x} & =\sqrt{y-2}
\end{array}\right\}
$$

$$
\frac{d y}{d x}=\sqrt{y-2} \text { slope field: }
$$

is called an equilibrium solution
Def Solution such that $\frac{d y}{d x}=0$
(Webwork) How to associate slope fields with differential equations Example Match the following ODEs with their slope fields

Fig I
ODE A: $\frac{d y}{d x}=\underbrace{x+y}_{f(x, y)}$

ODE $B: \frac{d y}{d x}=\underbrace{x y}_{g(x, y)}$

Tips i) Check how derivatives behave along the x-axis by setting $y=0$ in $f(x, y)$ and $g(x, y)$.

$$
f(x, 0)=x
$$

The slopes for $\frac{d y}{d x}=x+y$
are x along the x-axis.
The ODE corresponds to Fig II

$$
g(x, 0)=0
$$

The slopes for $\frac{d y}{d x}=x y$ are 0 along the x-axis The ODE matches Fig I.

2) Check how derivatives behave along the y-axis by setting $x=0$ in $f(x, y)$ and $g(x, y)$.

$$
f(0, y)=y
$$

$$
g(0, y)=0
$$

The slopes for $\frac{d y}{d x}=x+y$
The slopes for $\frac{d y}{d x}=x y$ are y along the x-axis.

The ODE corresponds to Fig II are 0 along the y-axis The ODE matches Fig I.
3) Set $f(x, y)=0$ \& $g(x, y)=0$. This gives the set of points with slope 0 .

$$
\begin{aligned}
& f(x, y)=0 \\
& x+y=0 \\
& y=-x \quad(\text { a line })
\end{aligned}
$$

$$
g(x, y)=0
$$

$$
x y=0 \rightarrow x=0 \text { The }
$$ union

of
two lines

$$
\begin{aligned}
& x=0 \text { and } \\
& y=0
\end{aligned}
$$

4) Study the sign of $f(x, y)$ and $g(x, y)$ for different values of x and y. $f(x, y)=x+y<0$ if $y<-x \quad g(x, y)=x y>0$ on 1st \& 3rd quadrant
>0 if $y>-x$
In particular, slope at $(-1,-1)$
is $f(-1,-1)=-2<0$

In particular, slope at $(-1,-1)$ is $\quad g(-1,-1)=1>0$.

