Math 3113 Sec 1.3 Part a Slope fields & Solution curves

Sec 1.2:
$$\frac{dy}{dx} = f(x)$$
 Integrate both sides

Now consider ODE $\frac{dy}{dx} = f(x,y)$

$$\frac{dy}{dx} = f(x,y)$$

a multivariable function in two variables x, y

Examples (from webwork):

$$y' = \frac{1}{e^x} + 2y$$
 $\frac{dy}{dx} = y$

$$\frac{dy}{dx} = y$$

$$\frac{dy}{dx} = 1 + y^2$$

$$\frac{dy}{dx} = x + y$$

$$\frac{dy}{dx} = \frac{xy}{\cos(x)}$$

$$\frac{dy}{dx} = x + y \qquad \frac{dy}{dx} = \frac{xy}{\cos(x)} \qquad \frac{dy}{dx} = \sqrt{y^2 - 81}$$

- · We cannot simply integrate both sides.
- · There is no uniform method for solving this ODE.
- · Today: A graphical method for constructing approximate solutions

Example
$$y' = \frac{1}{2}y$$

Q: Suppose we found a solution y(x) such that y(0) = 100. What is the slope of the tangent line to the solution y(x) at (0,100)?

A: The slope is $y'(0) = \frac{1}{2} 100 = 50$

Q: What if the solution we found satisfies y(0) = 200?

A: The slope is $y'(0) = \frac{1}{2}200 = 100$

At each point (a,b), attach a small line segment w slope $f(a,b) = \frac{1}{z}b$. All these small line segments form a slope field (or direction field)

• A sketch of the slope field of $\frac{dy}{dx} = \frac{y}{2}$

• Approximate solutions of $y' = \frac{y}{2}$ using sketch of the slope field:

FIGURE 1.3.2(b) Slope field and solution curves for y' = (0.5)y.

General method for approximating graphical solutions

- In general, to construct the slope field for ODE y'=f(x,y)For each point (a,b) ...
 - * compute y'(a) = f(a,b)
 - * draw through (a,b) a small line segment wy slope f(a,b).
- · Approximate solutions of y'= f(x,y) using slope field.
- * Choose one point (a,b) and sketch a curve by following the small line segments.
- * This curve is a solution to $\frac{dy}{dx} = f(x,y)$, y(a) = b.

Example Consider the IVP
$$y' = x - y$$
, $y(-4) = 4$

$x \setminus y$	-4	-3	-2	-1	0	1	2	3	4
-4	0	-1	-2	-3	-4	-5	-6	-7	-8
-3	1	0	-1	-2	-3	-4	-5	-6	- 7
-2	2	1	0	-1	-2	-3	-4	-5	-6
-1	3	2	1	0	-1	-2	-3	-4	-5
0	4	3	2	1	0	-1	-2	-3	-4
1	5	4	3	2	1	0	-1	-2	-3
2	6	5	4	3	2	1	0	-1	-2
3	7	6	5	4	3	2	1	0	-1
4	8	7	6	5	4	3	2	1	0

The more values

we take, the more

precise the graphical

solution will be.

FIGURE 1.3.3. Values of the slope y' = x - y for $-4 \le x$, $y \le 4$.

FIGURE 1.3.4. Slope field for y' = x - y corresponding to the table of slopes in Fig. 1.3.3.

Solution such that 4(-4)=4

FIGURE 1.3.5. The solution curve through (-4, 4).

Finer sketch

FIGURE 1.3.6. Slope field and typical solution curves for y' = x - y.

y = x - 1 is a colution such that y(0) = -1

Slope field plotter on Geo Gebra:

geogebra. org / m/W7dAdggc

Try
$$\frac{dy}{dx} = xy^2$$

$$\frac{dy}{dx} = \sqrt{y-2}$$

on slope field plotter

$$\frac{dy}{dx} = \sqrt{y-2}$$
 Slope field:

(Webwork) How to associate slope fields with differential equations Example Match the following ODEs with their slope fields

ODE A: $\frac{dy}{dx} = \frac{x + y}{f(x, y)}$

ODE B:
$$\frac{dy}{dx} = \frac{xy}{y(x,y)}$$

Tips) Check how derivatives behave along the x-axis by setting y=0 in f(x,y) and g(x,y).

$$f(x,0) = x$$

The slopes for $\frac{dy}{dx} = x+y$

g (x,0) = 0 The slopes for $\frac{dy}{dx} = x+y$ The slopes for $\frac{dy}{dx} = xy$

are x along the x-axis. are 0 along the x-axis

The ODE corresponds to Fig I __ The ODE matches Fig I.

2) Check how derivatives behave along the y-axis by setting x=0 in f(x,y) and g(x,y).

$$f(0,y) = y$$

The slopes for $\frac{dy}{dx} = x+y$
are y along the x-axis.
The ODE Corresponds to Fig.

9 (0,4) = 0

The slopes for $\frac{dy}{dx} = x+y$ The slopes for $\frac{dy}{dx} = xy$ are y along the x-axis. are 0 along the y-axis

The ODE corresponds to Fig I The ODE matches Fig I.

3) Set f(x,y)=0 & g(x,y)=0. This gives the set of points with slope 0.

$$y = -x$$
 (a line)

g(x,y)=0

4) Study the sign of f(x,y) and g(x,y) for different values of x and y.

$$f(x,y) = x+y < 0$$
 if $y < -x$

$$g(x,y)=xy>0$$
 on 1st & 3rd quadrant <0 on 2nd & 4th quadrant.

In particular, slope at (-1,-1)

