Math 3113 Sec 1.2 Integral as general and particular solutions

- A function $F(x)$ is called an antiderivative of $f(x)$ is $(F(x))^{\prime}=f(x)$.

We often use indefinite integrals to denote antiderivatives e.g. $\int \cos x d x=\sin x+C$

- Antiderivatives of power functions:

If $p \neq 1$, then $\int x^{p} d x=\frac{x^{p+1}}{p+1}+C$

$$
\int \frac{1}{x} d x=\ln |x|+C
$$

Example Solve the ordinary differential equation $(O D E) \frac{d y}{d x}=\frac{1}{\sqrt{x}}$.
Equivalently, find all possible antiderivatives of $\frac{1}{\sqrt{x}}$:

$$
\begin{aligned}
y & =\int \frac{1}{\sqrt{x}} d x+C \\
& =\int x^{-\frac{1}{2}} d x+C \\
& =\frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+C \\
& =2 x^{\frac{1}{2}}+C
\end{aligned}
$$

$y=2 \sqrt{x}+c$ is called the general solution to $\frac{d y}{d x}=\frac{1}{\sqrt{x}}$
$y=2 \sqrt{x}+5$ is called a particular solution to $\frac{d y}{d x}=\frac{1}{\sqrt{x}}$
$y=2 \sqrt{x}$ is also a particular solution to $\frac{d y}{d x}=\frac{1}{\sqrt{x}}$.

Generally, if the ODE is of the form

$$
\frac{d y}{d x}=\underbrace{f(x)}_{\text {only in terms of } x} \quad\left(\text { or } \frac{d v}{d t}=f(t) \text { or } \frac{d y}{d t}=f(t) \text { or } \frac{d K}{d t}=f(t)\right)
$$

- No y
then we can integrate both sides to obtain the general solution

$$
y=\int f(x) d x+C
$$

Example 1
Find the general solution of $\frac{d y}{d x}=x e^{x^{2}}$.
Answer

$$
y=\int x e^{x^{2}} d x+C
$$

u-substitution: $u=x^{2}$

$$
\begin{aligned}
d u & =2 x d x \quad \frac{1}{2} d u=x d x \\
\int e^{x^{2}} \frac{u}{\frac{1}{2} d u} & =\int e^{u} \frac{1}{2} d u \\
& =\frac{1}{2} e^{u}+C \\
& =\frac{1}{2} e^{x^{2}}+C
\end{aligned}
$$

Example 2
a) Find the general solution of $\frac{d y}{d x}=x e^{x}$
b) Find a solution to the Initial Value Problem $\frac{d y}{d x}=x e^{x}, y(0)=5$ Answer
a)

$$
y=\int x e^{x} d x+C
$$

Integration by parts: $\int u d v+\int v d u=u v$

$$
\int u d v=u v-\int v d u
$$

Let

$u=x$	$d v=e^{x} d x$
$d u=d x$	$v=e^{x}$

$$
\begin{aligned}
\iint_{u}^{x} \underbrace{e x}_{d v} d x & =u v-\int v d u \\
& =x e^{x}-\int e^{x} d x \\
& =x e^{x}-e^{x}+C
\end{aligned}
$$

b)

$$
\begin{aligned}
y(t) & =x e^{x}-e^{x}+c \\
5=y(0) & =0 \cdot e^{0}-e^{0}+c \\
5 & =-1+c \Rightarrow c=6 \\
y(t) & =x e^{x}-e^{x}+6
\end{aligned}
$$

Example 3
Find the general solution of $\quad \frac{d y}{d x}=\frac{1}{x^{2}+10 x+24}$
Answer $\quad y=\int \frac{1}{x^{2}+10 x+24} d x+C$
The function $\frac{1}{x^{2}+10 x+24}$ is a rational function
$\frac{P(x)}{Q(x)}$ where $P(x)$ and $Q(x)$ are both polynomials
So we can apply partial fraction method Partial fraction: $\frac{1}{x^{2}+10 x+24}=\frac{1}{(x+4)(x+6)}=\frac{A}{x+4}+\frac{B}{x+6}$

Solve for A, B :
Multiply both sides by $(x+4)(x+6): 1=A(x+6)+B(x+4)$
Put in (a number) $x+\binom{$ another }{ number } form: $1=(A+B) x+(A 6+B 4)$

$$
\left.\begin{array}{l}
0=A+B \\
1=6 A+4 B
\end{array}\right\} \Rightarrow \begin{aligned}
& B=-A \\
& 1=6 A+4(-A)=2 A \Rightarrow B=-\frac{1}{2}
\end{aligned} \quad \Rightarrow \quad \frac{1}{2}=A
$$

So $\frac{1}{(x+4)(x+6)}=\frac{1}{2} \frac{1}{x+4}-\frac{1}{2} \frac{1}{(x+6)}$

$$
\begin{aligned}
\int \frac{1}{x^{2}+10 x+24} d x & =\int \frac{1}{2} \frac{1}{x+4}-\frac{1}{2} \frac{1}{(x+6)} \\
& =\frac{1}{2} \ln |x+4|-\frac{1}{2} \ln |x+6|+C
\end{aligned}
$$

Example 4
You throw an arrow (of mass 3 kg) straight up from the ground with velocity $49 \mathrm{~m} / \mathrm{s}$. $\mathrm{m} / \mathrm{s}=$ meters $/ \mathrm{sec}$ second

When does the arrow return to the ground?
Answer
Let g be the gravity on earth $g \approx 9.8 \mathrm{~m} / \mathrm{s}^{2}$
Let $y(t)=$ height of arrow after t seconds
Let $v(t)=$ velocity of arrow after t seconds (up is positive)
So $v(0)=49 \mathrm{~m} / \mathrm{s}$
If we ignore air resistance,
then $\underbrace{\text { acceleration of arrow }}=-g$

$$
\frac{d v}{d t} \quad \text { gravity }
$$

$\frac{d v}{d t}=-9.8 \rightarrow$ This ODE is of the form $\frac{d v}{d t}=f(t)$ so we can integrate both sides to obtain the general solution.

$$
\begin{aligned}
& v(t)=\int-9.8 d t+C \\
& v(t)=-9.8 t+C
\end{aligned}
$$

Since $v(0)=49 \mathrm{~m} / \mathrm{s}$, we have

$$
49=-9.8(0)+C \Rightarrow C=49
$$

So $\quad v(t)=-9.8 t+49$
$y(t)=$ height of arrow after t seconds
So $\frac{d y}{d t}=v(t)=-9.8 t+49$ This ODE is of the form $\frac{d y}{d t}=f(t)$ so we can integrate both sides to obtain the general solution.

$$
\begin{aligned}
y & =\int-9.8 t+49 d t+C \\
& =-9.8 \frac{t^{2}}{2}+49 t+C
\end{aligned}
$$

Since $y(0)=0 \mathrm{~m}$, we have

$$
\begin{gathered}
0=-9.8(0)+49(0)+C \Rightarrow C=0 \\
\text { So } y(t)=-9.8 \frac{t^{2}}{2}+49 t \Rightarrow-4.9 t^{2}+49 t
\end{gathered}
$$

The arrow is on the ground

$$
\begin{aligned}
\text { iff } & y(t) \\
\text { iff } & =0 \\
\text { iff } & 4.9 t^{2}+49 t=0 \\
\text { inf } & t=0 \text { or } t=10
\end{aligned}
$$

The arrow returns to the ground after 10 secs.

