Math 3113 Introduction \& Sec 1.1

Question How do we interpret derivatives $\frac{d y}{d t}$?
Rate of change
Slope of the tangent line to the graph

* A differential equation is an equation involving derivatives of functions,

Examples of differential equations:

1) Newton's second law

If a force $F(t)$ acts on a particle
\& is directed along its line of motion $x(t)$, then

$$
F(t)=m a(t) \quad \text { or } \quad F=m a
$$

where m is the mass of the particle a is the $\underbrace{\text { acceleration }}_{\text {and derivative of } x(t)}$

$$
F(t)=m \frac{d^{2} x}{d t^{2}}
$$

2) Initial value
first-order diff. eq because there is only 1st derivative in the equation
3) System of differential equations

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=a x-p x y=x(a-p y) \\
\frac{d y}{d t}=-b y+q x y=y(-b+q x)
\end{array}\right.
$$

a, b, p, q are positive constants
This is also called the Predator - prey model

$$
\begin{aligned}
& x: \text { prey } \\
& y: \text { predator }
\end{aligned}
$$

4) $O D E$ vs PDE

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

$u(x, t)=$ temperature of a thin uniform rod at point x, time t is called a partial diff. equation (PDE)
because it involves partial derivatives

An equation with only "Calc 1" derivatives (the function we take the derivative of only depends on a single variable) is called an ordinary diff. equation $(O D E)$

What is a solution to a differential equation?

Def A function $y=f(t)$ is a solution to an $O D E$ if it satisfies the equation.

Examples

1) Is $y=3 t+t^{2}$ a solution to the $O D E$
another way of $t y^{\prime}-y=t^{2}$?
writing $\frac{d y}{d t}$
Answer $\quad y=3 t+t^{2}$

$$
y^{\prime}=3+2 t
$$

Plug in y and y^{\prime} into the right-hand of the $O D E$:
RMS: $t(\underbrace{3+2 t)}_{y^{\prime}}-(\underbrace{3 t+t^{2}}_{y})=3 t+2 t^{2}-3 t-t^{2}=t^{2}$
LIS: t^{2}
Thus RHS = LHS, and the equation is satisfied by $y=3 t+t^{2}$
2) Find all values of k such that $y=e^{k t}$ is a solution to the ODE $y^{\prime \prime}+10 y^{\prime}+21 y=0$
(1.e. such that $y=e^{k t}$ satisfies the ODE)

Note: The order of a diff eq is the order of the highest derivative that appears. So this is a 2nd-order ODE.

Answer

$$
\begin{aligned}
& y(t)=e^{k t} \\
& y^{\prime}(t)=k e^{k t} \\
& y^{\prime \prime}(t)=k^{2} e^{k t}
\end{aligned}
$$

I know I need to compute
$\xrightarrow[\rightarrow 1]{ }$ the 1st \& and derivatives because the ODE involves 1st \& and derivatives.

* $y(t)$ is a solution
iff $\underbrace{k^{2} e^{k t}}_{y^{\prime \prime}}+10 \underbrace{k e^{k t}}_{y^{\prime}}+21 \underbrace{e^{k t}}_{y^{\prime}}=0$
Here, 1 plug in $y, y^{\prime}, y^{\prime \prime}$ into the $O D E$
iff $e^{k t}\left(k^{2}+10 k+21\right)=0$.

Now 1 want to find all k such that $e^{k t}\left(k^{2}+10 k+21\right)=0$ Recall $e^{k t}>0$ for all t

Graph of $y(t)=e^{r t}$
so the equation is satisfied
iff $\quad k^{2}+10 k+21=0$
iff $\quad(k+3)(k+7)=0$
iff $\quad k=-3$ or $k=-7$
So $y=e^{k t}$ is a solution to the ODE iff $y=e^{-3 t}$ or $y=e^{-7 t}$
Warning: our $O D E$ has more than two solutions.

