Math 3113 Introduction & Sec 1.1 Question How do we interpret derivatives dy Rate of change Slope of the tangent line to the graph * A differential equation is an equation involving derivatives of functions. Examples of differential equations:

Newton's second law 1) If a force F(f) acts on a particle & is directed along its line of motion X(t), then -F(t) = ma(t) or F = mawhere m is the mass of the particle a is the acceleration of the particle, 2nd derivative of $\times(t)$ \Rightarrow F(t) = m $\frac{d^2 x}{dt^2}$

)	Initial value	problem		
	An example of a <u>first-order</u> diff.eg because there is only 1st derivative in the equation	$\frac{dy}{dt} = t e^{(t^2)}$)	y(o) = 4 initial condition

2

3) System of differential equations

$$\begin{cases}
\frac{dx}{dt} = ax - pxy = x(a - py) \\
\frac{dy}{dt} = -by + qxy = y(-b + qx) \\
a_{1}b, p, q \text{ are positive constants}
\end{cases}$$
This is also called the Predator - prey model
 $x : prey \\
y : predator
\end{cases}$

4) ODE vs PDE
 $\frac{\partial y}{\partial t} = k \frac{\partial^{2} u}{\partial x^{2}} \\
(u(x,t)) = temperature of a thin uniform red at point x, time the temperature of a thin uniform red at point x, time the temperature of temperat$

is called an ordinary diff. equation (ODE)

What is a <u>solution</u> to a differential equation? <u>Def</u> A function y = f(t) is a <u>solution</u> to an ODE if it satisfies the equation.

Examples
1) Is
$$y = 3t + t^2$$
 a solution to the ODE
another way of $ty' - y = t^2$?
Answer $y = 3t + t^2$
 $y' = 3 + 2t$
Plug in y and y' into the right-hand of the ODE:
RHS: $t(3+2t) - (3t+t^2) = 3t+2t^2 - 3t - t^2 = t^2$
 $y' = y$
LHS: t^2
Thus RHS=LHS, and the equation is Satisfied by $y=3t+t^2$
2) Find all values of k such that $y=e^{kt}$ is a solution
 te the ODE $y'' + log' + 2l g = 0$
(l.e. such that $y=e^{kt}$ satisfies the ODE)
Note: The order of a diff eq is the order of the
highest derivative that appears, So this is a
2nd-order ODE.

Answer

$$y(t) = e^{kt}$$
 $y'(t) = ke^{kt}$
 $y''(t) = k^2 e^{kt}$
 $y''(t) = k^2 e^{kt}$

* y(f) is a solution

iff
$$k^2 e^{kt} + 10 ke^{kt} + 21 e^{kt} = 0$$

 $y'' y' y'$
Here, l plug in y, y', y'' into the ODE
iff $e^{kt} (k^2 + 10k + 21) = 0$.

Now I want to find all k such that
$$e^{kt}(k^2 + lok + 2i) = 0$$

Recall $e^{kt} > 0$ for all t
 $fr > 0$
 $fr < 0$

so the equation is satisfied
iff
$$k^2 + 10k + 21 = 0$$

iff $(k+3)(k+7) = 0$
iff $k=-3$ or $k=-7$
So $y=e^{kt}$ is a solution to the ODE iff $y=e^{-3t}$ or $y=e^{-7t}$.
Warning: our ODE has more than two solutions.