Written Homework 6

There are four exercises total. Textbook references: Sections 5.1 and 5.2

Exercise 1

Consider the linear system

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}
4 & 2 \\
-3 & -1
\end{array}\right] \mathbf{x}(t)
$$

a.) Is $\mathbf{x}_{a}(t)=\left[\begin{array}{c}2 e^{t} \\ -3 e^{t}\end{array}\right]$ a solution to the linear system of ODEs? Is $\mathbf{x}_{b}(t)=\left[\begin{array}{c}e^{2 t} \\ -e^{2 t}\end{array}\right]$ a solution to the linear system of ODEs?
b.) Are the two vectors $\mathbf{x}_{a}(t)$ and $\mathbf{x}_{b}(t)$ linearly independent?
c.) Write the general solution to the ODE system using the given information.

Exercise 2

Consider the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$.
a.) Compute the determinant $\operatorname{det}(A)$.
b.) Find the eigenvalues λ_{1} and λ_{2} of A. Are the eigenvalues real or not real? Are they distinct or the same?
c.) For each for λ_{1} and λ_{2}, write down at least one eigenvector.

Exercise 3

Compute the general solution to the linear system of ODEs:

$$
\begin{aligned}
& x_{1}^{\prime}(t)=4 x_{1}+3 x_{2} \\
& x_{2}^{\prime}(t)=2 x_{1}-x_{2}
\end{aligned}
$$

Exercise 4

Use your answer from the previous exercise to find the particular solution of the same linear system of ODEs

$$
\begin{aligned}
x_{1}^{\prime}(t) & =4 x_{1}+3 x_{2} \\
x_{2}^{\prime}(t) & =2 x_{1}-x_{2}
\end{aligned}
$$

that satisfies the initial values $x_{1}(0)=1$ and $x_{2}(0)=1$.

