Written Homework 3

There are three exercises total. Textbook and lecture notes references: Section 1.5b (mixing problems), 2.4-2.6 (Euler's and improved Euler's methods, Runge-Kutta method), Section 1.1 (first day of class)

1. Consider the cascade of two tanks A and B, with $V(A)=200$ (gal) and $V(B)=400$ (gal), the volumes of brine in the two tanks. Each tank also initially contains 100 lb of salt.
Pure water flows into tank A at $10 \mathrm{gal} / \mathrm{min}$, the mixture from tank A flows into tank B at $10 \mathrm{gal} / \mathrm{min}$, and the mixture from tank B flows out at $10 \mathrm{gal} / \mathrm{min}$.
(a) Find the amount $x(t)$ of salt in tank A at time t by first setting up the ODE.
(b) Find the amount $y(t)$ of salt in tank B at time t by first setting up the ODE.
(c) Finally, find the maximum amount of salt ever in tank B.
(d) Do your computations depend on the volumes of the tanks A and B ? Why or why not?
2. Consider the IVP

$$
y^{\prime}=2 x y^{2} \quad, \quad y(0)=1
$$

Your task is to approximate the value $y(0.5)$ of the solution at $x=0.5$ using several methods.
Starting at $\left(x_{0}, y_{0}\right)=(0,1)$, perform the next few points necessary to get from $x=0$ to $x=0.5$.
(a) First, perform the classical Euler's method (Sec 2.4) using step size $h=0.25$.
(b) Next, perform the classical Euler's method (Sec 2.4) again but using a smaller step size $h=0.1$.
(c) Perform the Improved Euler's method (Sec 2.5) using the bigger step size $h=0.25$.
(d) Finally, perform the Runge-Kutte method (Sec 2.6) using the same big step size $h=0.25$.
(e) Since we are learning these numerical methods for the first time, I purposely picked an IVP whose exact solution we are able to compute using Chapter 1 techniques, and this exact solution is

$$
y(x)=\frac{1}{1-x^{2}}
$$

What is the value of the exact solution at $x=0.5$?
(f) Rank the four approximations above (from best to worst). What observations can you make?
3. Consider the ODE $y^{\prime \prime}+6 y^{\prime}+13 y=0$,
(a) Is $y_{1}=e^{-3 x} \cos (2 x)$ a solution to the ODE? Show your work, including computation for y^{\prime} and $y^{\prime \prime}$.
(b) Is $y_{2}=e^{-3 x} \sin (2 x)$ a solution to the ODE? Show your work, including computation for y^{\prime} and $y^{\prime \prime}$.
(c) Find a particular solution of the form $y=A e^{-3 x} \cos (2 x)+B e^{-3 x} \sin (2 x)$ that satisfies the initial conditions $y(0)=2$ and $y^{\prime}(0)=0$.

