MCS 220:	Week 5 Quiz 5
Tuesday, 7	March 2017

Name:	
name:	

1.	The contrapositive of the definition in our textbook is as follows. A function $f: A \to B$ is called <i>injective</i> iff, for every x_1 and x_2 in A , $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$.	
	Please negate the above condition. A function $f:A\to B$ is not injective iff,	
	there exist such that	
2.	According to the definition in our textbook, a relation ${\bf R}$ on a set S has the symmetric property iff,	
	for all $a, b \in S$,	
3.	Following to the above definition, a relation ${\bf R}$ on a set S does not have the symmetric property iff,	
	such that	

4. Define a relation **R** on the set of all integers \mathbb{Z} by $a\mathbf{R}b$ iff a-b=4k for some integer k. You have shown that **R** is in fact an equivalence relation. Describe the equivalence class which contains 5: