\qquad
Tuesday, 7 March 2017

1. The contrapositive of the definition in our textbook is as follows. A function $f: A \rightarrow B$ is called injective iff, for every x_{1} and x_{2} in $A, x_{1} \neq x_{2}$ implies $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Please negate the above condition. A function $f: A \rightarrow B$ is not injective iff,
there exist \qquad such that \qquad
2. According to the definition in our textbook, a relation \mathbf{R} on a set S has the symmetric property iff,
for all $a, b \in S$, \qquad .
3. Following to the above definition, a relation \mathbf{R} on a set S does not have the symmetric property iff,
\qquad such that \qquad
\qquad .
4. Define a relation \mathbf{R} on the set of all integers \mathbb{Z} by $a \mathbf{R} b$ iff $a-b=4 k$ for some integer k. You have shown that \mathbf{R} is in fact an equivalence relation. Describe the equivalence class which contains 5:

$$
E_{5}=\{.
$$

\qquad : \qquad

