Name:

Math 220 Spring 2017 Feb 28, 2017

In-class Exam 1 Time Limit: 50 minutes

- You should write your name at the top and read the instructions.
- Organize your writing, in a reasonably neat and coherent way, in the space provided. If you wish for something to not be graded, please strike it out neatly.

Problem	Points	Score
1	2	
2	3	
3	3	
4	6	
5	6	
6	0	
7	0	
Total:	20	

- This is a closed-book, closed-notes. No technology (including a calculator) is permitted.
- There are bonus questions at the end of the test. It would be best to work first on the main test.

1. (a) (1 point) Construct a truth table for

 $\sim Q$ and P

(b) (1 point) Construct a truth table for

 $\sim Q \Rightarrow \sim P$

- 2. Write the negation of each statement
 - (a) (1 point) The relation \mathbf{R} is reflexive or symmetric.

(b) (1 point) for every x and y in A, f(x)=f(y) only if x=y.

(c) (1 point) For each $\epsilon > 0$, there exists a $\delta > 0$ such that $|f(x) - 9| < \epsilon$ whenever $0 < |x - 2| < \delta$.

•

3. (3 points) Fill in the blanks.

Prove that, for all integers p and q, if pq is an even integer then p is an even integer or q is an even integer.

Proof. We will prove the contrapositive:

Suppose that p is			$_$ q is odd. That is, $p = _$		for some
	k,	q =	for some	<i>l</i> .	
			Then =		
			=		
			=		
Thus,					

•

4. (a) (2 points) Fill in the blanks using definition of union.

$$B \cup C = \left\{ x : \right\}$$

 $x \notin B \cup C$ iff

(b) (4 points) Prove that

 $(A \backslash B) \cap (A \backslash C) \subseteq A \backslash (B \cup C).$

.

5. (a) (2 points) Fill in the blanks using definition of the complement.

$$U \backslash A = \left\{ x : ___ \right\}$$

 $x \notin U \backslash A$ iff

(b)	(4 points) Let A and B be subsets of U. Prove, that, $A \setminus B \subseteq (U \setminus B) \setminus (U \setminus B)$	$(U \setminus A).$
	<i>Proof.</i> Suppose $x \in A \setminus B$. Then x	by definition.

. Therefore $x \in$

 $\overline{U\backslash B}.$

Furthermore, $x \notin U \setminus A$ because

Thus, _____.

•

6. (2 points (bonus)) Suppose that, for each natural number n, B_n is a subset of the set \mathbb{R} of all real numbers. Fill in the blanks

$$\bigcap_{n=1}^{\infty} B_n = \left\{ x \in \underline{\qquad} : \underline{\qquad} \right\}$$

For a natural number n, define

$$A_n = \left(2, 4 + \frac{1}{n}\right) = \left\{x \in \mathbb{R} : 2 < x < 4 + \frac{1}{n}\right\},\$$

an open interval in the real numbers $\mathbb R.$ Find

and

$$\bigcup_{n=1}^{\infty} A_n$$

 $\bigcap_{n=1}^{\infty} A_n$

Prove the above results by showing that the left-hand-side is a subset of of the right-hand-side, and vice versa. You may use the following fact (Theorem 3.3.10 pg 128):

For each $z \in \mathbf{R}$, there exists a natural number n such that n > z.

7. (1 point (bonus)) Prove, that, if $A \subseteq B$, then $A \cup B = B$.