Math 220
Spring 2017
Feb 28, 2017

Name:
In-class Exam 1
Time Limit: 50 minutes

- You should write your name at the top and read the instructions.
- Organize your writing, in a reasonably neat and coherent way, in the space provided. If you wish for something to not be graded, please strike it out neatly.

Problem		Points	Score
	1	2	
	2	3	
	3	3	
	4	6	
	5	6	
	6	0	
7	0		
Total:	20		

- This is a closed-book, closed-notes. No technology (including a calculator) is permitted.
- There are bonus questions at the end of the test. It would be best to work first on the main test.

1. (a) (1 point) Construct a truth table for

$$
\sim Q \text { and } P
$$

(b) (1 point) Construct a truth table for

$$
\sim Q \Rightarrow \sim P
$$

2. Write the negation of each statement
(a) (1 point) The relation \mathbf{R} is reflexive or symmetric.
(b) (1 point) for every x and y in $A, f(x)=f(y)$ only if $x=y$.
(c) (1 point) For each $\epsilon>0$, there exists a $\delta>0$ such that $|f(x)-9|<\epsilon$ whenever $0<|x-2|<\delta$.
3. (3 points) Fill in the blanks.

Prove that, for all integers p and q, if $p q$ is an even integer then p is an even integer or q is an even integer.

Proof. We will prove the contrapositive:

Suppose that p is
\qquad $k, \quad q=$ \qquad for some $\quad \ell$.
\qquad for some

Then \qquad $=$
$=$
$=$
Thus, \qquad
4. (a) (2 points) Fill in the blanks using definition of union.

$$
B \cup C=\{x:
$$

\qquad $x \notin B \cup C$ iff
(b) (4 points) Prove that

$$
(A \backslash B) \cap(A \backslash C) \subseteq A \backslash(B \cup C)
$$

5. (a) (2 points) Fill in the blanks using definition of the complement.

$$
U \backslash A=\{x:
$$

\qquad
$x \notin U \backslash A$ iff \qquad .
(b) (4 points) Let A and B be subsets of U. Prove, that, $A \backslash B \subseteq(U \backslash B) \backslash(U \backslash A)$.

Proof. Suppose $x \in A \backslash B$. Then x \qquad by definition.
\qquad $\overline{U \backslash B .}$
Furthermore, $x \notin U \backslash A$ because
\qquad .

Thus, \qquad .
6. (2 points (bonus)) Suppose that, for each natural number n, B_{n} is a subset of the set \mathbb{R} of all real numbers. Fill in the blanks

$$
\bigcap_{n=1}^{\infty} B_{n}=\left\{x \in _: \square\right.
$$

For a natural number n, define

$$
A_{n}=\left(2,4+\frac{1}{n}\right)=\left\{x \in \mathbb{R}: 2<x<4+\frac{1}{n}\right\}
$$

an open interval in the real numbers \mathbb{R}.
Find

$$
\bigcap_{n=1}^{\infty} A_{n}
$$

and

$$
\bigcup_{n=1}^{\infty} A_{n}
$$

Prove the above results by showing that the left-hand-side is a subset of of the right-hand-side, and vice versa. You may use the following fact (Theorem 3.3.10 pg 128):

For each $z \in \mathbf{R}$, there exists a natural number n such that $n>z$.
7. (1 point (bonus)) Prove, that, if $A \subseteq B$, then $A \cup B=B$.

