Binomial coefficients and q-binomial coefficients

Definition (Binomial coefficients). The *binomial coefficients* are the numbers

$$\binom{n}{k} := \frac{n!}{k! \ (n-k)!} = \frac{n(n-1)(n-2)\dots(n-k+2)(n-k+1)}{k!} \quad \text{for integers } n, k \text{ with } n \ge k \ge 0$$

Theorem 1 (Integrality of binomial coefficients). For all integers n, k with $n \ge k \ge 0$,

$$\binom{n}{k} \in \mathbb{Z}.$$

i. Proof of Theorem 1 by combinatorics

Lemma 2 (Choosing a k-subset). For all integers k, n with $n \ge k \ge 0, \ldots$

ii. Binomial Theorem

Theorem 3 (Binomial Theorem). For all $n \in \mathbb{Z} \ge 0$, $(x+y)^n =$

Proposition 4 (Counting all subsets of n).

iii. Pascal's Triangle

Write all binomial coefficients so that the kth element of the nth row is $\binom{n}{k}$, starting at n = 0.

n = 0							$\begin{pmatrix} 0\\ 0 \end{pmatrix}$													1						
n = 1						$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	(0)	$\binom{1}{1}$											1		1					
n=2					$\binom{2}{0}$		$\binom{2}{1}$		$\binom{2}{2}$									1		2		1				
n = 3				$\binom{3}{0}$		$\binom{3}{1}$		$\binom{3}{2}$		$\binom{3}{3}$							1		3		3		1			
n = 4			$\binom{4}{0}$		$\binom{4}{1}$		$\binom{4}{2}$		$\binom{4}{3}$		$\binom{4}{4}$					1		4		6		4		1		
n = 5		$\binom{5}{0}$		$\binom{5}{1}$		$\binom{5}{2}$		$\binom{5}{3}$		$\binom{5}{4}$		$\binom{5}{5}$			1		5		10		10		5		1	
n = 6	$\binom{6}{0}$		$\binom{6}{1}$		$\binom{6}{2}$		$\binom{6}{3}$		$\binom{6}{4}$		$\binom{6}{5}$		$\binom{6}{6}$	1		6		15		20		15		6		1

Proposition 5 (Recurrence relation).

Proposition 6 (Another recurrence relation).

For |x| < 1, we have the geometric series expansion

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{k=0}^{\infty} x^k$$
$$\frac{1}{(1-x)^m} = \left(\frac{1}{1-x}\right)^m = (1 + x + x^2 + x^3 + \dots)^m = \sum_{k=0}^{\infty} a_{m,k} x^k$$

where each $a_{m,k}$ is a positive integer because of the way power series (like polynomials) multiply.

v. Proof of Theorem 1 by group theory

Theorem (Lagrange's Theorem). If a group G of order g contains a subgroup H of order h then $g/h = |G|/|H| \in \mathbb{Z}$. For more details, see [BB96] or any undergraduate abstract algebra textbook.

vi. q-binomial coefficient

Definition (q-analogue of n). For $n \in \mathbb{Z}_{\geq 1}$, let

$$(n)_q = \frac{q^n - 1}{q - 1}$$

= 1 + q + q² + \dots + qⁿ⁻¹.

Definition (q-factorial of n). Set $(0)_q! := 1$ and

$$(n)_q! := (n)_q (n-1)_q \dots (2)_q (1)_q \text{ if } n \ge 1.$$

Definition (q-binomial coefficient). For integers n, k with $n \ge k \ge 0$,

$$\binom{n}{k}_{q} := \frac{(n)_{q}!}{(k)_{q}! \ (n-k)_{q}!} = \frac{(n)_{q}(n-1)_{q} \dots (n-k+2)_{q}(n-k+1)_{q}}{(k)_{q}!}$$

Theorem 7. For integers n, k with $n \ge k \ge 0$, $\binom{n}{k}_q$ is a polynomial in q with coefficients that are nonnegative integers.

Remark. All our proofs above for Theorem 1 can be adapted to give a proof that $\binom{n}{k}_{q}$ is a polynomial.

Today's talk was inspired by [Con]. To learn more about binomial coefficients, see [Bon17, Chapters 3-4] and [Sta11, Chapter 1]. For more details on *q*-binomial coefficients, see [Sta18, Chapter 6] and [Sta11, Chapter 1].

References

- [BB96] J. A. Beachy and W.D Blair. Abstract Algebra. Waveland Press, 1996. 2nd edition, http://www.math.niu.edu/~beachy/aaol/ theorems.html.
- [Bon17] M. Bona. A walk through combinatorics. World Scientific Publishing Co., 2017. 4th edition.
- [Con] K. Conrad. Personal communication.
- [Sta11] R. P. Stanley. Enumerative Combinatorics, Volume 1. Cambridge University Press, 2011. 2nd edition, http://www-math.mit. edu/~rstan/ec/ec1.pdf.
- [Sta18] R. P. Stanley. Algebraic combinatorics. Undergraduate Texts in Mathematics. Springer, 2018. 2nd edition.