
Binomial coefficients and q-binomial coefficients

Definition (Binomial coefficients). The binomial coefficients are the numbers(
n

k

)
:=

n!

k! (n− k)!
=

n(n− 1)(n− 2) . . . (n− k + 2)(n− k + 1)

k!
for integers n, k with n ≥ k ≥ 0.

Theorem 1 (Integrality of binomial coefficients). For all integers n, k with n ≥ k ≥ 0,(
n

k

)
∈ Z.

i. Proof of Theorem 1 by combinatorics

Lemma 2 (Choosing a k-subset). For all integers k, n with n ≥ k ≥ 0, . . .

ii. Binomial Theorem

Theorem 3 (Binomial Theorem). For all n ∈ Z ≥ 0,

(x + y)n =

Proposition 4 (Counting all subsets of n).

iii. Pascal’s Triangle

Write all binomial coefficients so that the kth element of the nth row is
(
n
k

)
, starting at n = 0.
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Proposition 5 (Recurrence relation).

Proposition 6 (Another recurrence relation).
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iv. Proof of Theorem 1 by calculus

For |x| < 1, we have the geometric series expansion

1

1− x
= 1 + x + x2 + x3 + · · · =

∞∑
k=0

xk

1

(1− x)m
=

(
1

1− x

)m

= (1 + x + x2 + x3 + . . . )m =

∞∑
k=0

am,kx
k

where each am,k is a positive integer because of the way power series (like polynomials) multiply.

v. Proof of Theorem 1 by group theory

Theorem (Lagrange’s Theorem). If a group G of order g contains a subgroup H of order h then g/h = |G|/|H| ∈ Z.

For more details, see [BB96] or any undergraduate abstract algebra textbook.

vi. q-binomial coefficient

Definition (q-analogue of n). For n ∈ Z≥1, let

(n)q =
qn − 1

q − 1

= 1 + q + q2 + · · ·+ qn−1.

Definition (q-factorial of n). Set (0)q! := 1 and

(n)q! := (n)q(n− 1)q . . . (2)q(1)q if n ≥ 1.

Definition (q-binomial coefficient). For integers n, k with n ≥ k ≥ 0,(
n

k

)
q

:=
(n)q!

(k)q! (n− k)q!
=

(n)q(n− 1)q . . . (n− k + 2)q(n− k + 1)q
(k)q!

Theorem 7. For integers n, k with n ≥ k ≥ 0,
(
n
k

)
q

is a polynomial in q with coefficients that are nonnegative

integers.

Remark. All our proofs above for Theorem 1 can be adapted to give a proof that
(
n
k

)
q

is a polynomial.

Today’s talk was inspired by [Con]. To learn more about binomial coefficients, see [Bon17, Chapters 3-4] and [Sta11,
Chapter 1]. For more details on q-binomial coefficients, see [Sta18, Chapter 6] and [Sta11, Chapter 1].
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