Binomial coefficients and ¢-binomial coefficients

Definition (Binomial coefficients). The binomial coefficients are the numbers
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L) = ( Al - x for integers n, k with n > k > 0.
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Theorem 1 (Integrality of binomial coefficients). For all integers n, k with n >k > 0,

(Z) ez,

i. PROOF OF THEOREM 1 BY COMBINATORICS

Lemma 2 (Choosing a k-subset). For all integers k,n withn >k >0, ...

1. BINOMIAL THEOREM

Theorem 3 (Binomial Theorem). For alln € Z > 0,
(z+y)" =

Proposition 4 (Counting all subsets of n).

ili. PAScAL’S TRIANGLE

Write all binomial coefficients so that the kth element of the nth row is (Z), starting at n = 0.
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Proposition 5 (Recurrence relation).

Proposition 6 (Another recurrence relation).



iv. PROOF OF THEOREM 1 BY CALCULUS

For |z| < 1, we have the geometric series expansion
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where each a,, ;; is a positive integer because of the way power series (like polynomials) multiply.

v. PROOF OF THEOREM 1 BY GROUP THEORY
Theorem (Lagrange’s Theorem). If a group G of order g contains a subgroup H of order h then g/h = |G|/|H| € Z.

For more details, see [BB96] or any undergraduate abstract algebra textbook.

vi. ¢-BINOMIAL COEFFICIENT

Definition (g-analogue of n). For n € Z>1, let

(n)g =

Definition (g-factorial of n). Set (0)4! :== 1 and
(M)l = (g = 1)y .- (2)g(D)g if 1 > 1.
Definition (g-binomial coefficient). For integers n,k with n >k > 0,
(n) . (n)q! ~ ()gn—=1)g...(n—k+2)g(n—k+1),
q
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Theorem 7. For integers n,k with n > k > 0, (Z)q s a polynomial in q with coefficients that are nonnegative
integers.

Remark. All our proofs above for Theorem 1 can be adapted to give a proof that (Z)q is a polynomial.

Today’s talk was inspired by [Con]. To learn more about binomial coefficients, see [Bonl7, Chapters 3-4] and [Stall,
Chapter 1]. For more details on ¢g-binomial coefficients, see [Stal8, Chapter 6] and [Stall, Chapter 1].
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