Binomial coefficients and q-binomial coefficients

Definition (Binomial coefficients). The binomial coefficients are the numbers

$$
\binom{n}{k}:=\frac{n!}{k!(n-k)!}=\frac{n(n-1)(n-2) \ldots(n-k+2)(n-k+1)}{k!} \quad \text { for integers } n, k \text { with } n \geq k \geq 0
$$

Theorem 1 (Integrality of binomial coefficients). For all integers n, k with $n \geq k \geq 0$,

$$
\binom{n}{k} \in \mathbb{Z}
$$

i. Proof of Theorem 1 by combinatorics

Lemma 2 (Choosing a k-subset). For all integers k, n with $n \geq k \geq 0, \ldots$

ii. Binomial Theorem

Theorem 3 (Binomial Theorem). For all $n \in \mathbb{Z} \geq 0$,

$$
(x+y)^{n}=
$$

Proposition 4 (Counting all subsets of n).

iii. Pascal's Triangle

Write all binomial coefficients so that the k th element of the nth row is $\binom{n}{k}$, starting at $n=0$.
$n=0$
$n=1$
$n=2$
$n=3$
$n=4$
$n=5$
$n=6 \quad\binom{6}{0}$
$\binom{5}{0}$
$\binom{6}{1}$

$\begin{array}{ll}\binom{5}{5} \\ & \binom{6}{6}\end{array}$

Proposition 5 (Recurrence relation).

Proposition 6 (Another recurrence relation).

iv. Proof of Theorem 1 by calculus

For $|x|<1$, we have the geometric series expansion

$$
\begin{aligned}
\frac{1}{1-x} & =1+x+x^{2}+x^{3}+\cdots=\sum_{k=0}^{\infty} x^{k} \\
\frac{1}{(1-x)^{m}}=\left(\frac{1}{1-x}\right)^{m} & =\left(1+x+x^{2}+x^{3}+\ldots\right)^{m}=\sum_{k=0}^{\infty} a_{m, k} x^{k}
\end{aligned}
$$

where each $a_{m, k}$ is a positive integer because of the way power series (like polynomials) multiply.

v. Proof of Theorem 1 by group theory

Theorem (Lagrange's Theorem). If a group G of order g contains a subgroup H of order h then $g / h=|G| /|H| \in \mathbb{Z}$. For more details, see [BB96] or any undergraduate abstract algebra textbook.

```
vi. q-BINOMIAL COEFFICIENT
```

Definition (q-analogue of n). For $n \in \mathbb{Z}_{\geq 1}$, let

$$
\begin{aligned}
(n)_{q} & =\frac{q^{n}-1}{q-1} \\
& =1+q+q^{2}+\cdots+q^{n-1} .
\end{aligned}
$$

Definition (q-factorial of n). Set $(0)_{q}!:=1$ and

$$
(n)_{q}!:=(n)_{q}(n-1)_{q} \ldots(2)_{q}(1)_{q} \text { if } n \geq 1 .
$$

Definition (q-binomial coefficient). For integers n, k with $n \geq k \geq 0$,

$$
\binom{n}{k}_{q}:=\frac{(n)_{q}!}{(k)_{q}!(n-k)_{q}!}=\frac{(n)_{q}(n-1)_{q} \ldots(n-k+2)_{q}(n-k+1)_{q}}{(k)_{q}!}
$$

Theorem 7. For integers n, k with $n \geq k \geq 0,\binom{n}{k}_{q}$ is a polynomial in q with coefficients that are nonnegative integers.

Remark. All our proofs above for Theorem 1 can be adapted to give a proof that $\binom{n}{k}_{q}$ is a polynomial.
Today's talk was inspired by [Con]. To learn more about binomial coefficients, see [Bon17, Chapters 3-4] and [Sta11, Chapter 1]. For more details on q-binomial coefficients, see [Sta18, Chapter 6] and [Sta11, Chapter 1].

References

[BB96] J. A. Beachy and W.D Blair. Abstract Algebra. Waveland Press, 1996. 2nd edition, http://www.math.niu.edu/~beachy/aaol/ theorems.html.
[Bon17] M. Bona. A walk through combinatorics. World Scientific Publishing Co., 2017. 4th edition.
[Con] K. Conrad. Personal communication.
[Sta11] R. P. Stanley. Enumerative Combinatorics, Volume 1. Cambridge University Press, 2011. 2nd edition, http://www-math.mit. edu/~rstan/ec/ec1.pdf.
[Sta18] R. P. Stanley. Algebraic combinatorics. Undergraduate Texts in Mathematics. Springer, 2018. 2nd edition.

