Chaos: The Predictably Unpredictable

David T. McArdle
University of Connecticut

March 27th, 2019

Outline

Part 1: An Introduction to Dynamical Systems

Part 2: What is Chaos?

Part 3: Examples of Chaotic Dynamics

Dynamical Systems

Dynamical System: A system that describes a quantity that is evolving in time.

Dynamical Systems

Dynamical System: A system that describes a quantity that is evolving in time.

■ Differential Equations: Useful for quantities that evolve continuously over time.

Dynamical Systems

Dynamical System: A system that describes a quantity that is evolving in time.

■ Differential Equations: Useful for quantities that evolve continuously over time.

- Difference Equations: Useful for quantities with generational dependence (discrete steps with finite size)

Differential Equations (DE)

■ Applications: Physics, Engineering, Economics, etc

- Solve the Initial Value Problem (IVP):

$$
\frac{d y}{d x}=\frac{1}{2 \sqrt{x}}, \quad y(1)=1
$$

- The solution is a function $y(x)$ satisfying $\frac{d y}{d x}=\frac{1}{2 \sqrt{x}}$ and $y(1)=1$

Numerical Approximations

- Most DE's cannot be solved so cleanly
- Consider the general DE:

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

- Numerical Approximations with Euler's Method

Numerical Approximations

Difference Equations ($\Delta \mathrm{E}$)

- Applications: Biology, entomology, epidemiology, economics, chaos, etc.

- Can be derived from DE's
- $\Delta \mathrm{E}$'s are recurrence relations

■ A solution to a ΔE is a sequence of points

The Fibonacci Sequence

1st Order Difference Equations

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}\right), \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

1st Order Difference Equations

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}\right), \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

■ Positive Orbit: For $x_{0} \in \mathbb{R}$ the positive orbit is

$$
\gamma^{+}\left(x_{0}\right)=\left\{x_{0}, f\left(x_{0}\right), f^{2}\left(x_{0}\right), \ldots\right\}
$$

1st Order Difference Equations

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}\right), \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

■ Positive Orbit: For $x_{0} \in \mathbb{R}$ the positive orbit is

$$
\gamma^{+}\left(x_{0}\right)=\left\{x_{0}, f\left(x_{0}\right), f^{2}\left(x_{0}\right), \ldots\right\}
$$

■ Equilibrium Points: \bar{x} is equilibrium point if $\bar{x}=f(\bar{x})$

1st Order Difference Equations

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}\right), \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

■ Positive Orbit: For $x_{0} \in \mathbb{R}$ the positive orbit is

$$
\gamma^{+}\left(x_{0}\right)=\left\{x_{0}, f\left(x_{0}\right), f^{2}\left(x_{0}\right), \ldots\right\}
$$

- Equilibrium Points: \bar{x} is equilibrium point if $\bar{x}=f(\bar{x})$
- Periodic Point: \bar{x} is of period p if $\bar{x}=f^{p}(\bar{x})$

1st Order Difference Equations

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}\right), \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

■ Positive Orbit: For $x_{0} \in \mathbb{R}$ the positive orbit is

$$
\gamma^{+}\left(x_{0}\right)=\left\{x_{0}, f\left(x_{0}\right), f^{2}\left(x_{0}\right), \ldots\right\}
$$

- Equilibrium Points: \bar{x} is equilibrium point if $\bar{x}=f(\bar{x})$
- Periodic Point: \bar{x} is of period p if $\bar{x}=f^{p}(\bar{x})$

■ Global Dynamics: Determine behavior of $\gamma^{+}\left(x_{0}\right)$ for any choice of x_{0}.

Systems of Difference Equations

- 2D System of Difference Equations:

$$
\begin{aligned}
& x_{n+1}=f\left(x_{n}, y_{n}\right), n=1,2, \ldots \\
& y_{n+1}=g\left(x_{n}, y_{n}\right)
\end{aligned}
$$

■ Associated Map: $T: \mathcal{R} \rightarrow \mathcal{R}, T(x, y)=(f(x, y), g(x, y))$

- Positive Orbit: For $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ the positive orbit is

$$
\gamma^{+}\left(x_{0}, y_{0}\right)=\left\{\left(x_{0}, y_{0}\right), T\left(x_{0}, y_{0}\right), T^{2}\left(x_{0}, y_{0}\right), \ldots\right\}
$$

■ Global Dynamics: Determine behavior of $\gamma^{+}\left(x_{0}, y_{0}\right)$ for any choice of $\left(x_{0}, y_{0}\right)$.

The GOAL of Dynamical Systems

Finding Solutions

The GOAL of Dynamical Systems

Finding Solutions

- Specify parameter values

The GOAL of Dynamical Systems

Finding Solutions

- Specify parameter values

■ Choose specific initial conditions

The GOAL of Dynamical Systems

Finding Solutions

- Specify parameter values

■ Choose specific initial conditions
■ Predict the global dynamics of the system!

The GOAL of Dynamical Systems

Finding Solutions

- Specify parameter values

■ Choose specific initial conditions

- Predict the global dynamics of the system!

Finding ALL Solutions

The GOAL of Dynamical Systems

Finding Solutions

- Specify parameter values

■ Choose specific initial conditions
■ Predict the global dynamics of the system!

Finding ALL Solutions

- Let parameter values be arbitrary (but fixed)

The GOAL of Dynamical Systems

Finding Solutions

- Specify parameter values

■ Choose specific initial conditions
■ Predict the global dynamics of the system!

Finding ALL Solutions

- Let parameter values be arbitrary (but fixed)
- Let initial conditions be arbitrary (but fixed)

The GOAL of Dynamical Systems

Finding Solutions

- Specify parameter values

■ Choose specific initial conditions
■ Predict the global dynamics of the system!

Finding ALL Solutions

- Let parameter values be arbitrary (but fixed)
- Let initial conditions be arbitrary (but fixed)

■ Predict the global dynamics of the system!

Deterministic vs. Stochastic Dynamical Systems

What's the Difference?!

Deterministic vs. Stochastic Dynamical Systems

What's the Difference?!

- Deterministic: The output/ behavior of solutions to a model are fully determined by the parameters and the set of initial conditions.

Deterministic vs. Stochastic Dynamical Systems

What's the Difference?!

- Deterministic: The output/ behavior of solutions to a model are fully determined by the parameters and the set of initial conditions.
- Stochastic: (AKA Probabilistic) There is a probability associated with different outputs/ behaviors so the same set of parameters and initial conditions can lead to a bevy of different outputs.

Determinism: Laplace's Superman

Determinism: Laplace's Superman

We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes.

The Art of Prediction

The ideal situation:
1 Same causes always produce the same effects.
2 Like causes always produce like effects.

The game of Pool

What is CHAOS?

"A butterfly flapping its wings in Brazil can cause a tornado in Texas"

What is CHAOS?

"A butterfly flapping its wings in Brazil can cause a tornado in Texas"

Nationwide Commercial

What is CHAOS?

"A butterfly flapping its wings in Brazil can cause a tornado in Texas"

Nationwide Commercial

- (WEBSTER Definition) complete disorder and confusion

What is CHAOS?

"A butterfly flapping its wings in Brazil can cause a tornado in Texas"

Nationwide Commercial

- (WEBSTER Definition) complete disorder and confusion
- (MATH Definition) Sensitive dependence on initial conditions:

A small change to one state of a deterministic dynamical system can result in large differences in a later state.

What is CHAOS?

"A butterfly flapping its wings in Brazil can cause a tornado in Texas"

Nationwide Commercial

- (WEBSTER Definition) complete disorder and confusion
- (MATH Definition) Sensitive dependence on initial conditions:

A small change to one state of a deterministic dynamical system can result in large differences in a later state.

- (MATH Definition 2) Period 3 implies Chaos

What is CHAOS?

"A butterfly flapping its wings in Brazil can cause a tornado in Texas"

Nationwide Commercial

- (WEBSTER Definition) complete disorder and confusion
- (MATH Definition) Sensitive dependence on initial conditions:

A small change to one state of a deterministic dynamical system can result in large differences in a later state.

- (MATH Definition 2) Period 3 implies Chaos

Let's see some examples!

EX 1: The Double Pendulum [Setup]

Double Pendulum

- Two masses m_{1}, m_{2}
- Two lengths L_{1}, L_{2}
- Two pivot points and corresponding angles $\theta_{1}(t)$ and $\theta_{2}(t)$
- GOAL: Track m_{2} (i.e. the far tip) by tracking $\theta_{1}(t)$ and $\theta_{2}(t)$

The Double Pendulum: System of DE's

$$
\begin{gathered}
\theta_{1}^{\prime \prime}=\frac{-g\left(2 m_{1}+m_{2}\right) \sin \theta_{1}-m_{2} g \sin \left(\theta_{1}-2 \theta_{2}\right)-2 \sin \left(\theta_{1}-\theta_{2}\right) m_{2}\left(\theta_{2}^{\prime 2} L_{2}+\theta_{1}^{\prime 2} L_{1} \cos \left(\theta_{1}-\theta_{2}\right)\right)}{L_{1}\left(2 m_{1}+m_{2}-m_{2} \cos \left(2 \theta_{1}-2 \theta_{2}\right)\right)} \\
\theta_{2}^{\prime \prime}=\frac{2 \sin \left(\theta_{1}-\theta_{2}\right)\left(\theta_{1}^{\prime 2} L_{1}\left(m_{1}+m_{2}\right)+g\left(m_{1}+m_{2}\right) \cos \theta_{1}+\theta_{2}^{\prime 2} L_{2} m_{2} \cos \left(\theta_{1}-\theta_{2}\right)\right)}{L_{2}\left(2 m_{1}+m_{2}-m_{2} \cos \left(2 \theta_{1}-2 \theta_{2}\right)\right)}
\end{gathered}
$$

The Double Pendulum: Simulation

Double Pendulum Simulation

Double Pendulum, Side-by-side

Triple Pendulum Simulation

EX 2: The Gingerbread Man

2D System of ΔE 's

$$
\begin{aligned}
& x_{n+1}=1-y_{n}+\left|x_{n}\right| \\
& y_{n+1}=x_{n},
\end{aligned} \quad n=1,2, \ldots
$$

Let's check out the dynamics for some different choices of x_{0}, y_{0}.

EX 3: The Lorenz Attractor

EX 3: The Lorenz Attractor

- Meteorologist Edward Lorenz, 1963 (MIT)
■ Model convection in atmosphere
- 3D System of Differential Equations. Variables (x, y, z)
■ Simulated with computer to track solutions (i.e how atmosphere changes)

EX 3: The Lorenz Attractor

$$
\begin{aligned}
& \dot{x}=\sigma(y-x) \\
& \dot{y}=x(\rho-z)-y \\
& \dot{z}=x y-\beta z
\end{aligned}
$$

EX 3: The Lorenz Attractor

$$
\begin{aligned}
\dot{x} & =\sigma(y-x) \\
\dot{y} & =x(\rho-z)-y \\
\dot{z} & =x y-\beta z
\end{aligned}
$$

- x, y, and z represent states of atmosphere (temperature, wind speed, humidity, pressure, etc.)

EX 3: The Lorenz Attractor

$$
\begin{aligned}
\dot{x} & =\sigma(y-x) \\
\dot{y} & =x(\rho-z)-y \\
\dot{z} & =x y-\beta z
\end{aligned}
$$

$■ x, y$, and z represent states of atmosphere (temperature, wind speed, humidity, pressure, etc.)
■ α, ρ, β represent certain fixed physical properties of the atmosphere

EX 3: The Lorenz Attractor

$$
\begin{aligned}
& \dot{x}=\sigma(y-x) \\
& \dot{y}=x(\rho-z)-y \\
& \dot{z}=x y-\beta z
\end{aligned}
$$

$\square x, y$, and z represent states of atmosphere (temperature, wind speed, humidity, pressure, etc.)
■ α, ρ, β represent certain fixed physical properties of the atmosphere
■ After Lorenz ran a simulation, he went for coffee break, came back and...

EX 3: The Lorenz Attractor

Lorenz Demo

EX 4: Fun w/ Periodic Points

$$
x_{n+1}=\frac{1}{x_{n}}, \quad n=0,1,2, \ldots
$$

EX 4: Fun w/ Periodic Points

$$
\text { ■ } x_{n+1}=\frac{1}{x_{n}}, \quad n=0,1,2, \ldots \quad \text { All positive orbits are Period } 2
$$

EX 4: Fun w/ Periodic Points

$$
\begin{aligned}
& \text { - } x_{n+1}=\frac{1}{x_{n}}, \quad n=0,1,2, \ldots \quad \text { All positive orbits are Period } 2 \\
& x_{n+1}=\frac{1}{x_{n-1}}, \quad n=0,1,2, \ldots
\end{aligned}
$$

EX 4: Fun w/ Periodic Points

- $x_{n+1}=\frac{1}{x_{n}}, \quad n=0,1,2, \ldots \quad$ All positive orbits are Period 2
- $x_{n+1}=\frac{1}{x_{n-1}}, \quad n=0,1,2, \ldots \quad$ All positive orbits are Period 4

EX 4: Fun w/ Periodic Points

$$
\begin{aligned}
& \text { - } x_{n+1}=\frac{1}{x_{n}}, \quad n=0,1,2, \ldots \quad \text { All positive orbits are Period } 2 \\
& \text { - } x_{n+1}=\frac{1}{x_{n-1}}, \quad n=0,1,2, \ldots \quad \text { All positive orbits are Period } 4 \\
& x_{n+1}=\frac{1+x_{n}}{x_{n-1}}, \quad n=0,1,2, \ldots
\end{aligned}
$$

EX 4: Fun w/ Periodic Points

- $x_{n+1}=\frac{1}{x_{n}}, \quad n=0,1,2, \ldots \quad$ All positive orbits are Period 2

■ $x_{n+1}=\frac{1}{x_{n-1}}, \quad n=0,1,2, \ldots \quad$ All positive orbits are Period 4

- $x_{n+1}=\frac{1+x_{n}}{x_{n-1}}, \quad n=0,1,2, \ldots$ All positive orbits are Period 5

EX 4: Fun w/ Periodic Points

- $x_{n+1}=\frac{1}{x_{n}}, \quad n=0,1,2, \ldots \quad$ All positive orbits are Period 2
- $x_{n+1}=\frac{1}{x_{n-1}}, \quad n=0,1,2, \ldots \quad$ All positive orbits are Period 4
- $x_{n+1}=\frac{1+x_{n}}{x_{n-1}}, \quad n=0,1,2, \ldots$ All positive orbits are Period 5
- $x_{n+1}=\frac{x_{n}}{x_{n-1}}, \quad n=0,1,2, \ldots$

EX 4: Fun w/ Periodic Points

■ $x_{n+1}=\frac{1}{x_{n}}, \quad n=0,1,2, \ldots \quad$ All positive orbits are Period 2
■ $x_{n+1}=\frac{1}{x_{n-1}}, \quad n=0,1,2, \ldots \quad$ All positive orbits are Period 4

- $x_{n+1}=\frac{1+x_{n}}{x_{n-1}}, \quad n=0,1,2, \ldots$ All positive orbits are Period 5
- $x_{n+1}=\frac{x_{n}}{x_{n-1}}, \quad n=0,1,2, \ldots \quad$ All positive orbits are Period 6

EX 5: The Logistic Map

- Logistic $\Delta \mathrm{E}$:

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right), \quad x_{0} \in[0,1], r \in(0,4]
$$

EX 5: The Logistic Map

- Logistic $\Delta \mathrm{E}$:

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right), \quad x_{0} \in[0,1], r \in(0,4]
$$

- Originated as alternative model to $x_{n+1}=r x_{n}$

EX 5: The Logistic Map

- Logistic $\Delta \mathrm{E}$:

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right), \quad x_{0} \in[0,1], r \in(0,4]
$$

- Originated as alternative model to $x_{n+1}=r x_{n}$

■ Period doubling route to chaos.

EX 5: The Logistic Map

- Logistic $\Delta \mathrm{E}$:

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right), \quad x_{0} \in[0,1], r \in(0,4]
$$

- Originated as alternative model to $x_{n+1}=r x_{n}$

■ Period doubling route to chaos.

- Sensitive dependence on initial conditions

Let's check out the dynamics for some different choices of x_{0}, y_{0}.

That's All Folks

[^0]
[^0]:

