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Dynamical Systems

Dynamical System: A system that de-
scribes a quantity that is evolving in time.

Di↵erential Equations: Useful for
quantities that evolve continuously
over time.

Di↵erence Equations: Useful for
quantities with generational
dependence (discrete steps with
finite size)
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Di↵erential Equations (DE)

Applications: Physics, Engineering, Economics, etc

Solve the Initial Value Problem (IVP):

dy

dx

=
1

2
p
x

, y(1) = 1

The solution is a function y(x) satisfying dy

dx

= 1

2

p
x

and

y(1) = 1



Numerical Approximations

Most DE’s cannot be solved so cleanly

Consider the general DE:

dy

dx

= f (x , y), y(x
0

) = y

0

Numerical Approximations with Euler’s Method



Numerical Approximations



Di↵erence Equations (�E)

Applications: Biology, entomology, epidemiology, economics,
chaos, etc.

Can be derived from DE’s

�E’s are recurrence relations

A solution to a �E is a sequence of points



The Fibonacci Sequence

Fibonacci Sequence

x

n+1

= x

n

+ x

n�1

n = 0, 1, 2, . . .

x
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= 1, x�1

= 1



1st Order Di↵erence Equations

x

n+1

= f (x
n

), n = 0, 1, 2, ... (1)

Positive Orbit: For x
0

2 R the positive orbit is

�+(x
0

) = {x
0

, f (x
0

), f 2(x
0

), ...}

Equilibrium Points: x̄ is equilibrium point if x̄ = f (x̄)

Periodic Point: x̄ is of period p if x̄ = f

p(x̄)

Global Dynamics: Determine behavior of �+(x
0

) for any
choice of x

0

.
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Systems of Di↵erence Equations

2D System of Di↵erence Equations:

x

n+1

= f (x
n

, y
n

), n = 1, 2, . . .

y

n+1

= g(x
n

, y
n

)

Associated Map: T : R ! R, T (x , y) = (f (x , y), g(x , y))

Positive Orbit: For (x
0

, y
0

) 2 R2 the positive orbit is

�+(x
0

, y
0

) = {(x
0

, y
0

),T (x
0

, y
0

),T 2(x
0

, y
0

), ...}

Global Dynamics: Determine behavior of �+(x
0

, y
0

) for any
choice of (x

0

, y
0

).



The GOAL of Dynamical Systems

Finding Solutions

Specify parameter values

Choose specific initial conditions

Predict the global dynamics of the system!

Finding ALL Solutions

Let parameter values be arbitrary (but fixed)

Let initial conditions be arbitrary (but fixed)

Predict the global dynamics of the system!
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Deterministic vs. Stochastic Dynamical Systems

What’s the Di↵erence?!

Deterministic: The output/ behavior of solutions to a model
are fully determined by the parameters and the set of initial
conditions.

Stochastic: (AKA Probabilistic) There is a probability
associated with di↵erent outputs/ behaviors so the same set
of parameters and initial conditions can lead to a bevy of
di↵erent outputs.
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Determinism: Laplace’s Superman

We may regard the present state of the universe as the e↵ect of its
past and the cause of its future. An intellect which at a certain
moment would know all forces that set nature in motion, and all
positions of all items of which nature is composed, if this intellect
were also vast enough to submit these data to analysis, it would
embrace in a single formula the movements of the greatest bodies
of the universe and those of the tiniest atom; for such an intellect
nothing would be uncertain and the future just like the past would
be present before its eyes.
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The Art of Prediction

The ideal situation:

1 Same causes always produce the same e↵ects.

2 Like causes always produce like e↵ects.

The game of Pool

https://www.youtube.com/watch?v=c0gDLEHbYCk&t=546s


What is CHAOS?

“A butterfly flapping its wings in Brazil can cause a tornado in
Texas”

Nationwide Commercial

(WEBSTER Definition) complete disorder and confusion

(MATH Definition) Sensitive dependence on initial conditions:
A small change to one state of a deterministic dynamical
system can result in large di↵erences in a later state.

(MATH Definition 2) Period 3 implies Chaos

Let’s see some examples!

https://www.youtube.com/watch?v=Gv3k07BvhGQ
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EX 1: The Double Pendulum [Setup]

Double Pendulum

Two masses m
1

, m
2

Two lengths L
1

, L
2

Two pivot points and
corresponding angles
✓
1

(t) and ✓
2

(t)

GOAL: Track m

2

(i.e.
the far tip) by
tracking ✓

1

(t) and
✓
2

(t)



The Double Pendulum: System of DE’s



The Double Pendulum: Simulation

Double Pendulum Simulation

Double Pendulum, Side-by-side

Triple Pendulum Simulation

https://www.youtube.com/watch?v=hXOEoH5q3Hw
https://www.youtube.com/watch?v=dDU2JsgLpm4


EX 2: The Gingerbread Man

2D System of �E’s

x

n+1

= 1� y

n

+ |x
n

|
y

n+1

= x

n

, n = 1, 2, . . .

Let’s check out the dynamics for some di↵erent choices of x
0

, y
0

.



EX 3: The Lorenz Attractor



EX 3: The Lorenz Attractor

Meteorologist Edward
Lorenz, 1963 (MIT)

Model convection in
atmosphere

3D System of Di↵erential
Equations. Variables
(x , y , z)

Simulated with computer to
track solutions (i.e how
atmosphere changes)



EX 3: The Lorenz Attractor

ẋ = �(y � x)

ẏ = x(⇢� z)� y

ż = xy � �z

x , y , and z represent states of atmosphere (temperature, wind
speed, humidity, pressure, etc.)

↵, ⇢,� represent certain fixed physical properties of the
atmosphere

After Lorenz ran a simulation, he went for co↵ee break, came
back and...
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EX 3: The Lorenz Attractor

Lorenz Demo

https://www.youtube.com/watch?v=aAJkLh76QnM


EX 4: Fun w/ Periodic Points
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EX 5: The Logistic Map

Logistic �E:
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Originated as alternative model to x
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Period doubling route to chaos.

Sensitive dependence on initial conditions

Let’s check out the dynamics for some di↵erent choices of x
0

, y
0

.
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That’s All Folks


