Math 2794W An Interactive Introduction to LATEX Part 1: The Basics

Original slides written by Dr John D. Lees-Miller (modified with permission)

January 22, 2020

Why LATEX?

- It makes beautiful documents
 - Especially mathematics
- It was created by scientists, for scientists
 - A large and active community
- It is powerful you can extend it
 - Packages for papers, presentations, spreadsheets, ...

How does it work?

- You write your document in plain text with commands that describe its structure and meaning.
- The latex program processes your text and commands to produce a beautifully formatted document.

The rain in Spain falls \emph{mainly} on the plain.

The rain in Spain falls *mainly* on the plain.

More examples of commands and their output...

\begin{figure}
\includegraphics{gerbil}
\end{figure}

```
\begin{equation}\alpha + \beta + 1\end{equation}
\alpha + \beta + 1 (1)
```

Image license: CC0

Attitude adjustment

- Use commands to describe 'what it is', not 'how it looks'.
- Focus on your content.
- ► Let LATEX do its job.

Getting started

```
► A minimal LATEX document:
```

```
\documentclass{article}
\begin{document}
Hello World! % your content goes here...
\end{document}
```

- Commands start with a backslash [].
- Every document starts with a \documentclass command.
- The argument in curly braces () tells LATEX what kind of document we are creating: an article.
- A percent sign starts a comment LATEX will ignore the rest of the line.

Getting started with **Overleaf**

Overleaf is a website for writing documents in LATEX.

► It 'compiles' your LATEX automatically to show you the results.

Click here to open the example document in Overleaf

For best results, please use Google Chrome or a recent FireFox.

- As we go through the following slides, try out the examples by typing them into the example document on Overleaf.
- No really, you should try them out as we go!

Typesetting Text

- Type your text between \begin{document} and \end{document}.
- For the most part, you can just type your text normally.

Words are separated by one or more spaces.	Words are separated by one or more spaces.
Paragraphs are separated by one or more blank lines.	Paragraphs are separated by one or more blank lines.

Space in the source file is collapsed in the output.

The	rain	in Spain	The rain in Spain falls
falls	mainly on	the plain.	mainly on the plain.

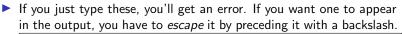
Typesetting Text: Caveats

Quotation marks are a bit tricky: use a backtick i on the left and an apostrophe i on the right.

Single quotes: `text'.

Single quotes: 'text'.

Double quotes: ``text''.


Double quotes: "text".

Some common characters have special meanings in LATEX:

& \$

percent sign hash (pound / sharp) sign ampersand

dollar sign

\\$\%\&\#!	\$%&#!</th></tr></tbody></table>
------------	----------------------------------

Handling Errors

- LATEX can get confused when it is trying to compile your document. If it does, it stops with an error, which you must fix before it will produce any output.
- For example, if you misspell \emph as \meph, LATEX will stop with an "undefined control sequence" error, because "meph" is not one of the commands it knows.

Advice on Errors

- 1. Don't panic! Errors happen.
- 2. Fix them as soon as they arise if what you just typed caused an error, you can start your debugging there.
- 3. If there are multiple errors, start with the first one the cause may even be above it.

Typesetting Exercise 1

Typeset this in $\[MText]X$: ¹

In March 2006, Congress raised that ceiling an additional \$0.79 trillion to \$8.97 trillion, which is approximately 68% of GDP. As of October 4, 2008, the "Emergency Economic Stabilization Act of 2008" raised the current debt ceiling to \$11.3 trillion.

Click to open this exercise in $\ensuremath{\textbf{Overleaf}}$

Hint: watch out for characters with special meanings!

Once you've tried, click here to see my solution.

¹http://en.wikipedia.org/wiki/Economy_of_the_United_States

Typesetting Mathematics: Dollar Signs

Why are dollar signs special? We use them to mark mathematics in text.

% not so good:	Let a and b be distinct
Let a and b be distinct positive	positive integers, and let c
integers, and let $c = a - b + 1$.	= a - b + 1.
<pre>% much better:</pre>	Let <i>a</i> and <i>b</i> be distinct
Let \$a\$ and \$b\$ be distinct positive	positive integers, and let
integers, and let \$c = a - b + 1\$.	c = a - b + 1.

Always use dollar signs in pairs — one to begin the mathematics. and one to end it.

LATEX handles spacing automatically; it ignores your spaces. Let \$y=mx+b\$ be \ldots Let y = mx + b be ... Let y = mx + b be ... Let y = m x + b be \ldots

Typesetting Mathematics: Notation

▶ Use caret ∩ for superscripts and underscore ∩ for subscripts.

 $y = c_2 x^2 + c_1 x + c_0$

$$y = c_2 x^2 + c_1 x + c_0$$

▶ Use curly braces {} } to group superscripts and subscripts.

$F_n = F_{n-1} + F_{n-2} $ % oops!	$F_n = F_n - 1 + F_n - 2$
$F_n = F_{n-1} + F_{n-2} % ok!$	$F_n = F_{n-1} + F_{n-2}$

► There are commands for Greek letters and common notation. \$\mu = A e^{Q/RT}\$ \$\Omega = \sum_{k=1}^{n} \omega_k\$ $\mu = Ae^{Q/RT}$ $\Omega = \sum_{k=1}^{n} \omega_k$ Typesetting Mathematics: Displayed Equations

If it's big and scary, *display* it on its own line using \begin{equation} and \end{equation}.

The roots of a quadratic equation are given by	The roots of a quadratic equation are given by
\begin{equation}	
$x = \frac{-b \ b \ b}{2 - 4ac}$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{c} (2)$
{2a}	$x = \frac{1}{2a} $ (2)
\end{equation}	28
where a , b and c are $\boldsymbol{0}$	where <i>a</i> , <i>b</i> and <i>c</i> are

Caution: $\[Mathebaacking]$ mostly ignores your spaces in mathematics, but it can't handle blank lines in equations — don't put blank lines in your mathematics.

(Ended here on the first day of class)

Interlude: Environments

equation is an *environment* — a context.

A command can produce different output in different contexts.

We can write $Omega = \sum_{k=1}^{n} \omega_k$ in text, or we can write equation $Omega = \sum_{k=1}^{n} \omega_k$ $end{equation}$ to display it. We can write $\Omega = \sum_{k=1}^{n} \omega_k$ $\Omega = \sum_{k=1}^{n} \omega_k$ (3) to display it.

Note how the Σ is bigger in the equation environment, and how the subscripts and superscripts change position, even though we used the same commands.

In fact, we could have written \$...\$ as \begin{math}...\end{math}.

Interlude: Environments

- The \begin and \end commands are used to create many different environments.
- ▶ The itemize and enumerate environments generate lists.

\begin{itemize} % for bullet points \item Biscuits	 Biscuits
\item Tea \end{itemize}	► Tea
<pre>\begin{enumerate} % for numbers \item Biscuits \item Tea</pre>	1. Biscuits
\end{enumerate}	2. Tea

Interlude: Packages

- All of the commands and environments we've used so far are built into LATEX.
- Packages are libraries of extra commands and environments. There are thousands of freely available packages.
- We have to load each of the packages we want to use with a \usepackage command in the *preamble*.
- Example: amsmath from the American Mathematical Society.

```
\documentclass{article} % top of the file
\usepackage{amsmath} % preamble
\begin{document}
% now we can use commands from amsmath here...
\end{document}
```

Typesetting Mathematics: Examples requiring amsmath

Use equation* ("equation-star") for unnumbered equations.

% will only work with the amsmath package	
\begin{equation*}	0 –
$\mbox{Omega} = \sum_{k=1}^{n} \mbox{Omega_k}$	
\end{equation*}	

 (Optional) LATEX treats adjacent letters as variables multiplied together, which is not always what you want. amsmath defines commands for many common mathematical operators.

(Optional) You can use \operatorname for others.

```
\beta_i =
\frac{\operatorname{Cov}(R_i, R_m)}
{\operatorname{Var}(R_m)}
```

```
\end{equation*}
```

$$eta_i = rac{\mathsf{Cov}(R_i, R_m)}{\mathsf{Var}(R_m)}$$

 $\sum \omega_k$

Typesetting Mathematics: Examples with amsmath

Align a sequence of equations at the equals sign

$$(x+1)^3 = (x+1)(x+1)(x+1)$$

= $(x+1)(x^2+2x+1)$
= $x^3 + 3x^2 + 3x + 1$

with the align* environment.

```
\begin{align*}
(x+1)^3 &= (x+1)(x+1)(x+1) \\
    &= (x+1)(x^2 + 2x + 1) \\
    &= x^3 + 3x^2 + 3x + 1
\end{align*}
```

- An ampersand separates the left column (before the =) from the right column (after the =).
- ► A double backslash () () starts a new line.

Typesetting Exercise 2

Typeset this in $\[Mathbb{E}]X$:

Let X_1, X_2, \ldots, X_n be a sequence of independent and identically distributed random variables with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{1}{n} \sum_{i}^{n} X_i$$

denote their mean. Then as *n* approaches infinity, the random variables $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $N(0, \sigma^2)$.

Click to open this exercise in $\ensuremath{\textbf{Overleaf}}$

- Hint: the command for ∞ is \infty.
- Once you've tried, click here to see my solution.

Typesetting Exercise 3: Using the handout "a quick guide to $\ensuremath{\mathbb{P}T_E\!X}$ "

For each section of the handout, look for something unfamiliar and try to produce it following the instruction.

End of Part 1

Congrats! You've already learned how to ...

- ► Typeset text in LATEX.
- Use lots of different commands.
- Handle errors when they arise.
- Typeset some beautiful mathematics.
- Use several different environments.
- Load packages.
- That's amazing!
- In Part 2, we'll see how to use LATEX to write structured documents with sections, cross references, figures, tables and bibliographies. See you then!