1 lecture16a.pdf: Vector spaces (1 pt)

(a.) (This question is taken from a read16a question.)

Either write x as a linear combination of the three polynomials

$$
1, \quad 1+x, \quad 1+2 x+x^{2}
$$

or show that it's impossible. Show all work.
(b.) Either write x as a linear combination of the three polynomials

$$
x^{2}+x+1, \quad x^{2}+2 x+1, \quad x^{2}+4 x+4
$$

or show that it's impossible. Show all work.

2 lecture16a.pdf: Vector spaces (1 pt)

Recall that \mathbb{P}_{2} denotes the set of polynomials in x of degree at most 2 . Show that every polynomial in \mathbb{P}_{2} can be written as a linear combination of the three polynomials

$$
x^{2}+x+1, \quad x^{2}+2 x+1, \quad x^{2}+4 x+4
$$

Instruction: Start by writing
'Let $f(x)=b_{2} x^{2}+b_{1} x+b_{0}$ for some numbers b_{2}, b_{1}, b_{0}. We need to show that there are a, b, c in \mathbb{R} such that $f(x)=a\left(x^{2}+x+1\right)+b\left(x^{2}+2 x+1\right)+c\left(x^{2}+4 x+4\right)$.
Then start computing like in Exercise 1(c) of Lec 16a. See also Exercise 1(a) in lecture17a.pdf.)

3 lecture16b.pdf: Vector spaces (subspaces) (1 pt)

Recall that \mathbb{P} denotes the vector space of all polynomials in x.
Determine whether $V:=\{f(x)$ in $\mathbb{P} \mid f(1)=0\}$ is or is not a subspace of \mathbb{P}. Prove your answer.
(1)

4 lecture16b.pdf: Vector spaces (subspaces) (1 pt)

Determine whether $W:=\{f(x)$ in $\mathbb{P} \mid f(1)=2\}$ is or is not a subspace of \mathbb{P}. Prove your answer.

5 lecture17a.pdf: Bases \& dimension for vector space, a (1 pt)

(This question is taken from a read17a question.)

Recall that \mathbb{P}_{2} denotes the set of polynomials in x of degree at most 2 .

$$
\text { Let } \quad S:=\left\{1, \quad 1+x, \quad 1+2 x+x^{2}\right\} \text {. }
$$

Answer the following questions. Show all computation and details.
(a.) Is S linearly independent?
(b.) Is S a spanning set for \mathbb{P}_{2} ?
(c.) Is S a basis for \mathbb{P}_{2} ?

6 lecture17a.pdf: Bases \& dimension for vector space, a (1 pt)

Recall that \mathbb{P}_{2} denotes the set of polynomials in x of degree at most 2 .

$$
\text { Let } \quad U:=\left\{x, \quad x^{2}+x+1, \quad x^{2}+2 x+1\right\}
$$

Answer the following questions. Show all computation and details.
(a.) Is U linearly independent?
(b.) Is U a spanning set of \mathbb{P}_{2}
(c.) Is U a basis for \mathbb{P}_{2} ?

7 lecture17b.pdf: Bases \& dimensions for vector spaces b (1pt)

(This question is taken from a read17b question.)
The set

$$
\left\{1,1+x, 1+2 x+x^{2}\right\}
$$

is a basis for \mathbb{P}_{2} (you don't need to verify this).
Write down the coefficient vector of the element x^{2} in the basis $\left\{1,1+x, 1+2 x+x^{2}\right\}$.

8 Lecture 17: Bases and dimensions for vector spaces (3 pts)

Let S denote the set of smooth functions $f(x)$ in \mathcal{C}^{∞} such that $f^{\prime \prime}(x)=-f(x)$. That is, $S=\left\{f(x)\right.$ in $\mathcal{C}^{\infty} \mid$ $\left.f^{\prime \prime}(x)=-f(x)\right\}$.
Warm up: Review Exercise 4 of lecture16b.pdf: We showed that S is a subspace of $\mathcal{C}{ }^{\infty}$ (so S is a vector space) \& that $\sin (x)$ is in S.
a. Is $\cos (x)$ in S ? Write down the computation explaining why or why not.
\square
b. Show that the set $\{\sin (x), \cos (x)\}$ is a linearly independent set.
(Hint1: Set an arbitrary linear combination to 0 , then show the coefficients must be 0 by plugging in convenient values, like in Exercise 2 of lecture17a.pdf. Hint2: what number r would give $\cos (r)=0$?)
\square
c. Let's say you know $\operatorname{dim}(S)=2$ (You don't need to show). Determine whether the set $\{\sin (x), \cos (x)\}$ is a basis for the vector space S. Explain in complete sentences. (Hint: Use '2 out of 3 ' rule (Thm 2 in lecture17b.pdf)
\square
d. Find all functions $f(x)$ such that $f^{\prime \prime}(x)=-f(x), f(0)=5, f^{\prime}(0)=7$; or show no such function exists.
\square

