0. Optional Question (computing kernel, lecture12a.pdf), don't turn in

 Let$$
B:=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
2 & -4 & -2
\end{array}\right]
$$

Compute the kernel of B, that is, find all solutions to

$$
B\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Note: For a similar problem, see Exercise 1 in lecture12a.pdf.
Your final answer should be equivalent to

$$
\operatorname{ker} B=\left\{\left[\begin{array}{c}
2 t+r \\
t \\
r
\end{array}\right] \text { for } t, r \text { in } \mathbb{R}\right\}=\left\{t\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+r\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text { where } t, r \text { are in } \mathbb{R}\right\},
$$

although your two vectors may be different.

1 Question (checking for spanning set, lecture12a.pdf)

Let V be the subspace of \mathbb{R}^{3} consisting of height-3 vectors whose 3rd entry is the sum of the first two entries. For example, $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}4 \\ 4 \\ 8\end{array}\right]$ are in V. (In the previous wksheet, we already showed that this subset is a subpsace.)
Let

$$
S:=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\} .
$$

Show that S is a spanning set for V.
(For full credit, follow "SAMPLE STUDENT PROOF" for Exercise 3 of lecture12a.pdf, but we are working with a different subspace and different vectors, so your solution should use different matrices and computation.)

2 Question (checking for linear independence, lecture12b.pdf)

Let

$$
S:=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\} .
$$

(the same set as in the previous question).
a. Use the computation you did earlier to determine whether S is linearly independent or linearly dependent. Explain.
(Hint: For determining whether a set is linearly independent or linearly dependent, see lecture12b.pdf Exercise 5,6 , or 7 .)
b. Let V be the subspace of \mathbb{R}^{3} consisting of height-3 vectors whose 3rd entry is the sum of the first two entries (from the previous Question 1). Determine whether S is a basis for V. Give a brief explanation (write in complete sentences).
(Hint: Use both part (a) of this page and Question 1)

3 Question (kernel as linear combinations, a spanning set, and the image of a matrix, lecture12a.pdf)

$$
\text { Let } A:=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 4 & 3 & 5
\end{array}\right] \text {. }
$$

a. Compute $\operatorname{ker}(A)$, i.e., find all solutions to $A\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Parametrize the solution set using parameters s and t.

(Recommended sanity check: Pick a nonzero vector \mathbf{v} in your solution set, compute $A \mathbf{v}$, and verify that it is equal to $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.)
b. Find two vectors \mathbf{v} and \mathbf{w} where you can rewrite your parametrization of the kernel of A as $s \mathbf{v}+t \mathbf{w}$.
\square
c. Finish each of the following sentences.
(i) The kernel of A is equal to the set of all linear combinations of the vectors \qquad
(ii) The kernel of A is equal to the span of the vectors \qquad
(iii) The kernel of A is equal to the image of a matrix \qquad (Hint: See Exercise $2 \&$ Fact 1 in lecture12a.pdf.)

4 Question

a. Let B be a 4×5 matrix. After row reducing to an REF matrix, we learn that this REF matrix has 3 leading 1 s. What is the rank of B ?
\square

How many parameters are required to parametrize the kernel of B ?
\square

How many vectors are required to span the kernel of B ?
\square
b. Let C be an $r \times c$ matrix and suppose C has rank k. How many vectors are required to parametrize the kernel of C ?
\square

How many vectors are required to span the kernel of C ?
\square

5 Challenge Problem (worth 0 points, but feedback will be given)

Show that, if the set of vectors

$$
\{\mathbf{y}, \mathbf{v}, \mathbf{w}\}
$$

is linearly independent, then the set of vectors

$$
\{\mathbf{y}+\mathbf{v}, \mathbf{y}+\mathbf{w}\}
$$

is also linearly independent.

