Wk11 Wksheet (eight + one problems)

1 Question (preserving addition + scalar multiplication, lecture10b.pdf)

Define $F: \mathbb{R}^{4} \rightarrow \mathbb{R}$ by $F\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]\right)=x_{1}+x_{2}+x_{3}+x_{4}$.
We will now show that F is a linear transformation.
a.) First, show that F preserves addition.
b.) Next, show that F preserves scalar multiplication.

2 Question (standard basis vectors, lecture10b.pdf)

Define $F: \mathbb{R}^{4} \rightarrow \mathbb{R}$ by $F\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]\right)=x_{1}+x_{2}+x_{3}+x_{4}$.
This is the same function as in the previous page.
a.) Write all the standard basis vectors of \mathbb{R}^{4}.
\square
b.) Evaluate F at each standard basis vector.
c.) Use part (a) and (b) above to write a matrix A such that $F=T_{A}$.

3 Question (Geometric meaning of determinant, lecture10b.pdf.)

a.) If A is a 2×2 matrix, what does lecture10b.pdf say about the geometric meaning of $|\operatorname{det}(A)|$, the absolute value of the determinant of A ? See the slide labeled $11 / 13$.
b.) Suppose $T_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear transformation which reflects each point across a line through the origin.

What must $|\operatorname{det}(A)|$ be? Your answer should be a specific number.
(Hint: How does reflection change areas? Imagine looking in the mirror.)

4 Question (Geometric meaning of eigenvectors, lecture10b.pdf.)

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function given by

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{l}
2 x+y \\
x+2 y
\end{array}\right]
$$

a.) Find a matrix A such that f is equal to the linear transformation of $A\left(\right.$ denoted by $\left.T_{A}\right)$.
(Reference: Exercise 3 in lecture10b.pdf. Check your answer! Is $A\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 x+y \\ x+2 y\end{array}\right]$?)
b.) The matrix A has two eigenvalues, 1 and 3 .

- The 1-eigenvectors of A are all nonzero vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ satisfying $A\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$.

In a previous wksheet, we showed that they are of the form $\left[\begin{array}{c}t \\ -t\end{array}\right]$ for nonzero number t. For examples, $\left[\begin{array}{c}-2 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}100 \\ -100\end{array}\right]$ are 1-eigenvectors of A.

- The 3-eigenvectors of A are all nonzero vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ satisfying $A\left[\begin{array}{l}x \\ y\end{array}\right]=3\left[\begin{array}{l}x \\ y\end{array}\right]$.

In a previous wksheet, we showed that they are of the form $\left[\begin{array}{l}t \\ t\end{array}\right]$ for nonzero number t. For examples, $\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}100 \\ 100\end{array}\right]$ are 3 -eigenvectors of A.

For each eigenvalue of A, pick one of the eigenvectors. Call your chosen 1-eigenvector \mathbf{v} and your 3-eigenvector \mathbf{w}. Your pick for a 1-eigenvector $\mathbf{v}: \square$. Compute $f(\mathbf{v}): \square$. Your 3-eigenvector $\mathbf{w}: \square$. Compute $f(\mathbf{w}): \square$.

Plot \mathbf{v} below

Plot w below

$$
\text { Plot } f(\mathbf{v}) \text { below }
$$

Plot $f(\mathbf{w})$ below

(Verify that f sends your v to a vector parallel to v, and that f sends your w to a vector parallel to w, as promised in Eigenvectors revisited in lecture10b.pdf)

5 Question (kernel of a matrix, lecture11a.pdf)

Let

$$
B:=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
2 & -4 & -2
\end{array}\right]
$$

a.) Write down the definition of the kernel of the 2×3 matrix B. by copying Slide $9 / 13$ of lecture11a.pdf but replace m, n with actual numbers.)
\square
b.) Using the method shown in Exercise 2 of lecture11a.pdf, determine whether $\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$ is in the kernel of B. Show work.
\square
c.) Using the method shown in Exercise 2 of lecture11a.pdf, determine whether $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is in the kernel of B. Show work.
\square

6 Question (Image of a matrix, lecture11a.pdf)

Let

$$
B:=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
2 & -4 & -2
\end{array}\right] \quad \text { like in the previous page. }
$$

a.) Write the definition of the image of B by copying Slide $12 / 13$ of lecture11a.pdf but replace m, n with numbers.)
\square
b.) Determine whether $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is in the image of B. Show work, like in Exercise 3 of lecture11a.pdf.
\square
c.) Determine whether $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ is in the image of B. Show work, like in Exercise 3 of lecture11a.pdf
\square
d.) Analyze the computation you did for $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$, then explain why every vector in the image of B must be of the form $\left[\begin{array}{c}t \\ -2 t\end{array}\right]$ for some number t.
(You don't need to write a proof, but explain your thought process using words and math symbols.)

7 Question (Copying sample student proof, lecture11b.pdf.)

(Warm-up: On scratch paper or a notebook or a note-taking app, copy the "SAMPLE STUDENT PROOF" from Exercise 6 given on page 15 of the file lecture11b.pdf. Do not submit this warm-up activity.)

Let S be the subset of vectors in \mathbb{R}^{2} whose entries are the same. Show that S is a subspace of \mathbb{R}^{2}.

Hint: To earn full credit, you should simply copy the "SAMPLE STUDENT PROOF" from Exercise 6 of Lec 11b but change the number and height of the vectors appropriately.

8 Question (subspace proof, lecture11b.pdf.)

Hint: follow the sample answers from Exercises 6,7 of lecture11b.pdf, but the set V here is completely different, so don't simply copy.
Let V be the subset of \mathbb{R}^{3} consisting of height-3 vectors whose 3rd entry is the sum of the first two entries. (For example, $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 2\end{array}\right]$, and $\left[\begin{array}{l}4 \\ 4 \\ 8\end{array}\right]$ are in $\left.V\right)$. We will break down the steps of a proof that V is a subspace of \mathbb{R}^{3}.
a. Is V non-empty? Why and why not?
\square
b. Let v and w be in V. What does this tell you about v and w ?
\square
c. Next, give an argument that $v+w$ is in V.
\square
d. What have you just shown about V ? (Hint: use the phrase "closed under ...")
\square
e. We need another argument to complete the proof. Fill in the blanks below to complete the proof that V is a subspace.
N ext, let v be in V and let r be in \mathbb{R}. This means we may write v as \ldots

We then check that
$r v=$

Therefore, $r v$ is in V, so V is \qquad
We have shown that V is a subspace.

9 Challenge Problem (worth 0 points, but feedback will be given)

Show that, if W contains more than one element and W is a subspace of \mathbb{R}, then $W=\mathbb{R}$. (That is, the only two subspaces of \mathbb{R} are $\{0\}$ and \mathbb{R}.)

