1 Question (lecture9a.pdf)

Let $\mathbf{u}=\left[\begin{array}{c}3 \\ 3 \\ 1 \\ -1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 3\end{array}\right]$
(a) Compute the length of \mathbf{u} and the length of \mathbf{v}. (Don't approximate.)
(b) Find the angle between \mathbf{u} and \mathbf{v}.

2 Question (Projection)

(Hint: A similar computation is done in Exercise 3 of lecture9b.pdf)
Let L be the line through the points $(0,0)$ and $(1,1)$, and let $P: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be projection onto L.
a.) Find a formula for $P\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)$ where $\left[\begin{array}{l}a \\ b\end{array}\right] \in \mathbb{R}^{2}$.
\square
b.) Find a matrix M such that $P=T_{M}$.

3 Question (Not T_{A} for any matrix A, lecture9b.pdf)

Hint: You can either write in your own words or simply copy word-for-word the solution of Exercise 4 of Lecture 9b but change the numbers appropriately. The solution to Exercise 4 is on page 18 of the PDF file lecture9b.pdf

Let g be the function which translates all 2 -vectors (points) up by 2 .
a.) Give a formula for g.
\square
b.) Show that g is not a linear transformation T_{A} for any matrix A.

4 Question (Properties of linear transformation, lecture10a.pdf)

Use slide 6, 7, 8,10 in lecture10a.pdffo help you fill in the blank. There should not be letters m and n. Replace them with actual numbers!
A 2×4-matrix gives a linear transformation $T_{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$.
a.) The domain of T_{A} is the set of vectors of height \qquad .
b.) The target of T_{A} is the set of vectors of height \qquad .
c.) T_{A} sends $\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ to -
d.) T_{A} preserves addition. This means ...
\square
e.) T_{A} preserves scalar multiplication. This means ...
\square
f.) T_{A} preserves linear combinations. This means ...
\square

5 Question (Not a linear transformation, lecture10a.pdf)

Define a function $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
G\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x^{2} \\
y
\end{array}\right]
$$

Use the properties of linear transformation (from Lecture 10) to show that G is not a linear transformation.
Write your solution following the sample answer given in lecture10a.pdf, Exercise 1.

6 Question (A linear transformation preserves linear combinations)

If $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ is a linear transformation, and we know that
$T\left(\left[\begin{array}{l}1 \\ 4 \\ 3 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 4 \\ 3\end{array}\right] \quad$ and $\quad T\left(\left[\begin{array}{l}4 \\ 3 \\ 1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 5 \\ 1\end{array}\right], \quad$ find $T\left(\left[\begin{array}{c}3 \\ -1 \\ -2 \\ 0\end{array}\right]\right)$.

Hint: See Exercise 2 of lecture10a.pdf

7 Challenge Problem (worth 0 points, but feedback will be given)

Given vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{3}, denote their dot product by $\mathbf{u} \cdot \mathbf{v}$ as usual.
Let $\mathbf{u}:=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ in \mathbb{R}^{3}.
Define

$$
\begin{gathered}
T: \mathbb{R}^{3} \rightarrow \mathbb{R} \text { by } \\
T(\mathbf{v})=\mathbf{u} \cdot \mathbf{v} \text { for all } \mathbf{v} \text { in } \mathbb{R}^{3} .
\end{gathered}
$$

Show that T is a linear transformation.

