1 Question (def of eigenvector and eigenvalue)

a.) Below, write down the definition of an eigenvector of a matrix and an eigenvalue of a matrix. Explain in a way that your future self (a month from now and a year from now) would understand. (See Slide 4 lecture7b.pdf)
\square
b.) Is it possible for an eigenvector to be a zero vector?Yes, is it possible. There are matrices with zero vectors as eigenvectors.No, it is not possible. There are no matrices with zero vectors as eigenvectors.
c.) Is it possible for an eigenvalue to be the number 0 ?
\qquad Yes, is it possible. There are matrices with the number 0 as an eigenvalue.No, it is not possible. There are no matrices with the number 0 as an eigenvalue.

2 Question (eigenvectors)

Reference: All examples in lecture7b.pdf are about finding λ-eigenvectors or showing they don't exist.
Let $A:=\left[\begin{array}{lr}2 & 1 \\ 1 & 2\end{array}\right]$. Find all 3-eigenvectors of A (that is, find all nonzero vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ satisfying $A\left[\begin{array}{l}x \\ y\end{array}\right]=3\left[\begin{array}{l}x \\ y\end{array}\right]$), if possible. Otherwise, show that A has no 3 -eigenvectors.

3 Question (eigenvectors)

Let $A:=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$. Find all 1-eigenvectors of A (that is, find all nonzero vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ satisfying $A\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$), if possible. Otherwise, show that A has no 1-eigenvectors.

4 Question

Let $A:=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$. Find all -1-eigenvectors of A (that is, find all nonzero vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ satisfying $A\left[\begin{array}{l}x \\ y\end{array}\right]=-\left[\begin{array}{l}x \\ y\end{array}\right]$, if possible. Otherwise, show that A has no -1 -eigenvectors.

5 Question

Suppose A is a square matrix and we know that -2 is an eigenvalue of A. Let v denote a -2 -eigenvector. (That is, suppose we know that $A v=-2 v$).
a.) Show that 4 is an eigenvalue of A^{2} with v as an eigenvector.
\square
b.) Show that -8 is an eigenvalue of A^{3} with v as an eigenvector.

6 Question

Let $M:=\left[\begin{array}{cc}8 & 2 \\ -6 & 0\end{array}\right]$.
a.) Using the definition of characteristic polynomial from lecture8a.pdf to compute the characteristic polynomial of M as a function of x.

| 1 |
| :--- | :--- |

b.) Find the roots of this characteristic polynomial.
\square
c.) Use your answer to find all eigenvalues of M.

7 Question

Let $B:=\left[\begin{array}{ccc}-2 & -2 & 4 \\ -4 & 1 & 2 \\ 2 & 2 & 5\end{array}\right]$.
a.) Find the characteristic polynomial $p_{B}(x)$ of B.
\square
b.) One of the roots of this polynomial is 3 . Find the other roots of $p_{B}(x)$. Hint: use long division to find the other roots.
c.) Use your previous answer to find all the eigenvalues of B.
d.) The matrix $B=\left[\begin{array}{ccc}-2 & -2 & 4 \\ -4 & 1 & 2 \\ 2 & 2 & 5\end{array}\right]$ is the same as the matrix on the previous page.

Find all eigenvectors corresponding to the eigenvalue 3.

8 Question

Let

$$
M:=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

a.) Using the definition of characteristic polynomial given in lecture 8 a notes: lecture8a.pdf, compute the characteristic polynomial of M as a function of x.
\square
b.) The matrix M has exactly one eigenvalue λ. What is it?

c.) Solve the matrix equation

$$
\left[\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & 1-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

(where λ should be replaced with your answer to the previous part) to compute all λ-eigenvectors of M. Hint: You will need multiple parameters to describe your solution set! (Maybe use the letters r, s, t).

9 Challenge Problem (worth 0 points, will not influence course grade)

Suppose A is a 4×4 matrix. Show that the eigenvalues of A and the eigenvalues of its transpose, A^{T}, are exactly the same.
(Hint: Try showing that their characteristic polynomials are the same.)

