(There are ten problems total)
Problems are designed to be started during class with classmates and the instructor. References: Lec 1a, 1b

1 Question

Consider the system of two linear equations in two variables

$$
\begin{aligned}
& x-2 y=-1 \\
& x+2 y=3
\end{aligned}
$$

a. Is the system consistent or inconsistent? If it is consistent, find solutions to the system.
b. Each equation in the system represents a line. Sketch both lines on the same graph. (First try to do these by hand, then check with a computing tool such as desmos.com/calculator).
c. The main problem: Explain in a complete sentence (or two) a connection between part (a) and (b).

2 Question

Consider the system of two linear equations in two variables

$$
\begin{aligned}
& -2 x+y=0 \\
& -2 x+y=3
\end{aligned}
$$

a. Is the system consistent or inconsistent? If it is consistent, find solutions to the system.
b. Each equation in the system represents a line. Sketch both lines on the same graph.
c. The main problem: Explain in a complete sentence (or two) a connection between part (a) and (b).

3 Question

Determine whether the following statement is true or false. If it's false, give a counterexample showing that it's false.
If a linear system is consistent, it must have more than one solution.

4 Question

Consider the system of two linear equations in two variables

$$
\begin{aligned}
-6 x+2 y & =-8 \\
3 x-y & =4
\end{aligned}
$$

a. Is the system consistent or inconsistent? If it is consistent, find solutions to the system.
b. Each equation in the system represents a line. Sketch both lines on the same graph. (First try to do these by hand, then check with a computing tool such as desmos.com/calculator).
c. Explain in a complete sentence (or two) a connection between part (a) and (b).
d. In what way does this system differ from the system given in Question 1? (Answer in complete sentences.)

5 Question

Determine whether the statement is true or false. If it's false given a counterexample showing that it's false.
If a linear system is consistent, it must have exactly one solution.

6 Question

a. Describe the following operation using full sentence/s.

$$
\begin{aligned}
& x+2 y+3 z=4 \quad 5 x+6 y+7 z=8 \\
& 5 x+6 y+7 z=8 \longmapsto x+2 y+3 z=4 \\
& 9 x+10 y=12 \quad 9 x+10 y=12
\end{aligned}
$$

b. Describe the following operation using complete sentence/s.

$$
\begin{array}{rlrl}
x+2 y+3 z & =4 & 2 x+4 y+6 z & =8 \\
5 x+6 y+7 z & =8 & \longmapsto 5 x+6 y+7 z & =8 \\
9 x+10 y & =12 & 9 x+10 y & =12
\end{array}
$$

c. Describe the following operation using complete sentence/s.

$$
\begin{array}{rlrl}
x+2 y+3 z & =4 & x+2 y+3 z & =4 \\
5 x+6 y+7 z & =8 \quad \longmapsto 7 x+10 y+13 z & =16 \\
9 x+10 y & =12 & 9 x+10 y & =12
\end{array}
$$

7 Question

Babysitters Annie and Bob earn a total of $\$ 24.6$ when Annie works 2 hours and Bob works 3 hours. They earn a total of $\$ 23.90$ if Annie works 3 hours and Bob works 2 hours.
a. Model this situation using a system of linear equations.
b. Solve the linear system to find the hourly rate of Annie and the hourly rate of Bob. ${ }^{1}$ Show your work.

[^0]
8 Question

(Optional: You may use tools like desmos.com/calculator to quickly visualize your system.)
For each of the following, either write down a linear system or explain why it's impossible.

1. Write down a system of three linear equations in variables x and y which has a unique solution.
2. Write down a system of three linear equations in variables x and y which has no solution.
3. Write down a system of three linear equations in variables x and y which has exactly two solution.

9 Question

Use only the techniques covered in Lec 1a and 1b to help you complete the following problem. Show your work. ${ }^{2}$ Consider the system of equations

$$
\begin{aligned}
x+2 y-z-w & =0 \\
z+2 w & =4 \\
-x-2 y+2 z+4 w & =5
\end{aligned}
$$

a. Solve for the value x.
i) 1
ii) 2
iii) 3
iv) x can be any number
v) -1
vi) -2
b. Solve for the value y.
i) 1
ii) 2
iii) 3
iv) y can be any number
v) -1
vi) -2

[^1]
10 Question

Use only the techniques covered in lecture 1 a and 1 b to help you complete the following problem. Show your work. Which one of the statements below is true for the system of equations

$$
\left\{\begin{array}{r}
x+y-z=0 \\
3 x+11 y+z=0 \\
2 x+4 y-z=0
\end{array} ?\right.
$$

i. The system has a unique solution $(0,0,0)$.
ii. The system has a unique solution $(-3,1,-2)$.
iii. The system has solutions of the form $(1, s, s)$, where s is arbitrary.
iv. The system has solutions of the form $(3 t,-t, 2 t)$, where t is arbitrary.
v. The system is inconsistent.

[^0]: ${ }^{1}$ This was a long time ago, and they are still in middle school, so their hourly rates are not very high.

[^1]: ${ }^{2}$ If you use a calculator or software to verify your answer, specify the name of the calculator/software.

