
Chapter 10

Inner Product Spaces

10.1 Inner Products and Norms

The dot product was introduced in Rn to provide a natural generalization of the geometrical notions of
length and orthogonality that were so important in Chapter 4. The plan in this chapter is to define an inner

product on an arbitrary real vector space V (of which the dot product is an example in Rn) and use it to
introduce these concepts in V . While this causes some repetition of arguments in Chapter 8, it is well
worth the effort because of the much wider scope of the results when stated in full generality.

Definition 10.1 Inner Product Spaces

An inner product on a real vector space V is a function that assigns a real number 〈v, w〉 to every
pair v, w of vectors in V in such a way that the following axioms are satisfied.

P1. 〈v, w〉 is a real number for all v and w in V .

P2. 〈v, w〉= 〈w, v〉 for all v and w in V .

P3. 〈v+w, u〉= 〈v, u〉+ 〈w, u〉 for all u, v, and w in V .

P4. 〈rv, w〉= r〈v, w〉 for all v and w in V and all r in R.

P5. 〈v, v〉> 0 for all v #= 0 in V .

A real vector space V with an inner product 〈 , 〉 will be called an inner product space. Note that every
subspace of an inner product space is again an inner product space using the same inner product.1

Example 10.1.1

Rn is an inner product space with the dot product as inner product:

〈v, w〉= v ·w for all v, w ∈ Rn

See Theorem 5.3.1. This is also called the euclidean inner product, and Rn, equipped with the dot
product, is called euclidean n-space.

Example 10.1.2

If A and B are m×n matrices, define 〈A, B〉= tr (ABT ) where tr (X) is the trace of the square
matrix X . Show that 〈 , 〉 is an inner product in Mmn.

1If we regard Cn as a vector space over the field C of complex numbers, then the “standard inner product” on Cn defined in
Section 8.7 does not satisfy Axiom P4 (see Theorem 8.7.1(3)).
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530 Inner Product Spaces

Solution. P1 is clear. Since tr (P) = tr (PT ) for every square matrix P, we have P2:

〈A, B〉= tr (ABT ) = tr [(ABT )T ] = tr (BAT ) = 〈B, A〉

Next, P3 and P4 follow because trace is a linear transformation Mmn→R (Exercise 10.1.19).
Turning to P5, let r1, r2, . . . , rm denote the rows of the matrix A. Then the (i, j)-entry of AAT is
ri · r j, so

〈A, A〉= tr (AAT ) = r1 · r1 + r2 · r2 + · · ·+ rm · rm

But r j · r j is the sum of the squares of the entries of r j, so this shows that 〈A, A〉 is the sum of the
squares of all nm entries of A. Axiom P5 follows.

The importance of the next example in analysis is difficult to overstate.

Example 10.1.3: 2

Let C[a, b] denote the vector space of continuous functions from [a, b] to R, a subspace of
F[a, b]. Show that

〈 f , g〉=
∫ b

a
f (x)g(x)dx

defines an inner product on C[a, b].

Solution. Axioms P1 and P2 are clear. As to axiom P4,

〈r f , g〉=
∫ b

a
r f (x)g(x)dx = r

∫ b

a
f (x)g(x)dx = r〈 f , g〉

Axiom P3 is similar. Finally, theorems of calculus show that 〈 f , f 〉=
∫ b

a f (x)2dx≥ 0 and, if f is
continuous, that this is zero if and only if f is the zero function. This gives axiom P5.

If v is any vector, then, using axiom P3, we get

〈0, v〉= 〈0+0, v〉= 〈0, v〉+ 〈0, v〉

and it follows that the number 〈0, v〉 must be zero. This observation is recorded for reference in the
following theorem, along with several other properties of inner products. The other proofs are left as
Exercise 10.1.20.

Theorem 10.1.1

Let 〈 , 〉 be an inner product on a space V ; let v, u, and w denote vectors in V ; and let r denote a
real number.

1. 〈u, v+w〉= 〈u, v〉+ 〈u, w〉

2. 〈v, rw〉= r〈v, w〉= 〈rv, w〉

2This example (and others later that refer to it) can be omitted with no loss of continuity by students with no calculus
background.
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3. 〈v, 0〉= 0 = 〈0, v〉

4. 〈v, v〉= 0 if and only if v = 0

If 〈 , 〉 is an inner product on a space V , then, given u, v, and w in V ,

〈ru+ sv, w〉= 〈ru, w〉+ 〈sv, w〉= r〈u, w〉+ s〈v, w〉

for all r and s in R by axioms P3 and P4. Moreover, there is nothing special about the fact that there are
two terms in the linear combination or that it is in the first component:

〈r1v1 + r2v2 + · · ·+ rnvn, w〉 = r1〈v1, w〉+ r2〈v2, w〉+ · · ·+ rn〈vn, w〉, and

〈v, s1w1 + s2w2 + · · ·+ smwm〉 = s1〈v, w1〉+ s2〈v, w2〉+ · · ·+ sm〈v, wm〉

hold for all ri and si in R and all v, w, vi, and w j in V . These results are described by saying that inner
products “preserve” linear combinations. For example,

〈2u−v, 3u+2v〉= 〈2u, 3u〉+ 〈2u, 2v〉+ 〈−v, 3u〉+ 〈−v, 2v〉
= 6〈u, u〉+4〈u, v〉−3〈v, u〉−2〈v, v〉
= 6〈u, u〉+ 〈u, v〉−2〈v, v〉

If A is a symmetric n×n matrix and x and y are columns in Rn, we regard the 1×1 matrix xT Ay as a
number. If we write

〈x, y〉= xT Ay for all columns x, y in Rn

then axioms P1–P4 follow from matrix arithmetic (only P2 requires that A is symmetric). Axiom P5 reads

xT Ax > 0 for all columns x #= 0 in Rn

and this condition characterizes the positive definite matrices (Theorem 8.3.2). This proves the first asser-
tion in the next theorem.

Theorem 10.1.2

If A is any n×n positive definite matrix, then

〈x, y〉= xT Ay for all columns x, y in Rn

defines an inner product on Rn, and every inner product on Rn arises in this way.

Proof. Given an inner product 〈 , 〉 on Rn, let {e1, e2, . . . , en} be the standard basis of Rn. If x =
n

∑
i=1

xiei

and y =
n

∑
j=1

y je j are two vectors in Rn, compute 〈x, y〉 by adding the inner product of each term xiei to

each term y je j. The result is a double sum.

〈x, y〉=
n

∑
i=1

n

∑
j=1
〈xiei, y je j〉=

n

∑
i=1

n

∑
j=1

xi〈ei, e j〉y j
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As the reader can verify, this is a matrix product:

〈x, y〉=
[

x1 x2 · · · xn

]





〈e1, e1〉 〈e1, e2〉 · · · 〈e1, en〉
〈e2, e1〉 〈e2, e2〉 · · · 〈e2, en〉

...
... . . . ...

〈en, e1〉 〈en, e2〉 · · · 〈en, en〉









y1
y2
...

yn





Hence 〈x, y〉= xT Ay, where A is the n×n matrix whose (i, j)-entry is 〈ei, e j〉. The fact that

〈ei, e j〉= 〈e j, ei〉

shows that A is symmetric. Finally, A is positive definite by Theorem 8.3.2.

Thus, just as every linear operator Rn → Rn corresponds to an n× n matrix, every inner product on Rn

corresponds to a positive definite n× n matrix. In particular, the dot product corresponds to the identity
matrix In.

Remark

If we refer to the inner product space Rn without specifying the inner product, we mean that the dot
product is to be used.

Example 10.1.4

Let the inner product 〈 , 〉 be defined on R2 by
〈[

v1
v2

]
,
[

w1
w2

]〉
= 2v1w1− v1w2− v2w1 + v2w2

Find a symmetric 2×2 matrix A such that 〈x, y〉= xT Ay for all x, y in R2.

Solution. The (i, j)-entry of the matrix A is the coefficient of viw j in the expression, so

A =

[
2 −1
−1 1

]
. Incidentally, if x =

[
x

y

]
, then

〈x, x〉= 2x2−2xy+ y2 = x2 +(x− y)2 ≥ 0

for all x, so 〈x, x〉= 0 implies x = 0. Hence 〈 , 〉 is indeed an inner product, so A is positive
definite.

Let 〈 , 〉 be an inner product on Rn given as in Theorem 10.1.2 by a positive definite matrix A. If
x =

[
x1 x2 · · · xn

]T , then 〈x, x〉 = xT Ax is an expression in the variables x1, x2, . . . , xn called a
quadratic form. These are studied in detail in Section 8.9.



10.1. Inner Products and Norms 533

Norm and Distance

Definition 10.2 Norm and Distance

As in Rn, if 〈 , 〉 is an inner product on a space V , the norm3 ‖v‖ of a vector v in V is defined by

‖v‖=
√
〈v, v〉

We define the distance between vectors v and w in an inner product space V to be

d (v, w) = ‖v−w‖

Note that axiom P5 guarantees that 〈v, v〉 ≥ 0, so ‖v‖ is a real number.

Example 10.1.5

a bO

|| f ||2

y = f (x)2

x

y The norm of a continuous function f = f (x) in C[a, b]
(with the inner product from Example 10.1.3) is given by

‖ f‖=

√
∫ b

a
f (x)2dx

Hence ‖ f‖2 is the area beneath the graph of y = f (x)2

between x = a and x = b (shaded in the diagram).

Example 10.1.6

Show that 〈u+v, u−v〉= ‖u‖2−‖v‖2 in any inner product space.

Solution. 〈u+v, u−v〉= 〈u, u〉−〈u, v〉+ 〈v, u〉−〈v, v〉
= ‖u‖2−〈u, v〉+ 〈u, v〉−‖v‖2

= ‖u‖2−‖v‖2

A vector v in an inner product space V is called a unit vector if ‖v‖= 1. The set of all unit vectors in
V is called the unit ball in V . For example, if V = R2 (with the dot product) and v = (x, y), then

‖v‖2 = 1 if and only if x2 + y2 = 1

Hence the unit ball in R2 is the unit circle x2 +y2 = 1 with centre at the origin and radius 1. However, the
shape of the unit ball varies with the choice of inner product.

3If the dot product is used in Rn, the norm ‖x‖ of a vector x is usually called the length of x.
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Example 10.1.7

(a, 0)

(0, b)

(−a, 0)

(0, −b)

O
x

y

Let a > 0 and b > 0. If v = (x, y) and w = (x1, y1), define an
inner product on R2 by

〈v, w〉= xx1
a2 + yy1

b2

The reader can verify (Exercise 10.1.5) that this is indeed an
inner product. In this case

‖v‖2 = 1 if and only if x2

a2 +
y2

b2 = 1

so the unit ball is the ellipse shown in the diagram.

Example 10.1.7 graphically illustrates the fact that norms and distances in an inner product space V vary
with the choice of inner product in V .

Theorem 10.1.3

If v #= 0 is any vector in an inner product space V , then 1
‖v‖v is the unique unit vector that is a

positive multiple of v.

The next theorem reveals an important and useful fact about the relationship between norms and inner
products, extending the Cauchy inequality for Rn (Theorem 5.3.2).

Theorem 10.1.4: Cauchy-Schwarz Inequality4

If v and w are two vectors in an inner product space V , then

〈v, w〉2 ≤ ‖v‖2‖w‖2

Moreover, equality occurs if and only if one of v and w is a scalar multiple of the other.

Proof. Write ‖v‖= a and ‖w‖= b. Using Theorem 10.1.1 we compute:

‖bv−aw‖2 = b2‖v‖2−2ab〈v, w〉+a2‖w‖2 = 2ab(ab−〈v, w〉)
‖bv+aw‖2 = b2‖v‖2 +2ab〈v, w〉+a2‖w‖2 = 2ab(ab+ 〈v, w〉)

(10.1)

It follows that ab− 〈v, w〉 ≥ 0 and ab + 〈v, w〉 ≥ 0, and hence that −ab ≤ 〈v, w〉 ≤ ab. But then
|〈v, w〉|≤ ab = ‖v‖‖w‖, as desired.

Conversely, if |〈v, w〉| = ‖v‖‖w‖ = ab then 〈v, w〉 = ±ab. Hence (10.1) shows that bv−aw = 0 or
bv+aw = 0. It follows that one of v and w is a scalar multiple of the other, even if a = 0 or b = 0.

4Hermann Amandus Schwarz (1843–1921) was a German mathematician at the University of Berlin. He had strong geo-
metric intuition, which he applied with great ingenuity to particular problems. A version of the inequality appeared in 1885.
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Example 10.1.8

If f and g are continuous functions on the interval [a, b], then (see Example 10.1.3)

(∫ b

a
f (x)g(x)dx

)2

≤
∫ b

a
f (x)2dx

∫ b

a
g(x)2dx

Another famous inequality, the so-called triangle inequality, also comes from the Cauchy-Schwarz
inequality. It is included in the following list of basic properties of the norm of a vector.

Theorem 10.1.5

If V is an inner product space, the norm ‖ ·‖ has the following properties.

1. ‖v‖ ≥ 0 for every vector v in V .

2. ‖v‖= 0 if and only if v = 0.

3. ‖rv‖= |r|‖v‖ for every v in V and every r in R.

4. ‖v+w‖ ≤ ‖v‖+‖w‖ for all v and w in V (triangle inequality).

Proof. Because ‖v‖ =
√
〈v, v〉, properties (1) and (2) follow immediately from (3) and (4) of Theo-

rem 10.1.1. As to (3), compute

‖rv‖2 = 〈rv, rv〉= r2〈v, v〉= r2‖v‖2

Hence (3) follows by taking positive square roots. Finally, the fact that 〈v, w〉 ≤ ‖v‖‖w‖ by the Cauchy-
Schwarz inequality gives

‖v+w‖2 = 〈v+w, v+w〉= ‖v‖2 +2〈v, w〉+‖w‖2

≤ ‖v‖2 +2‖v‖‖w‖+‖w‖2

= (‖v‖+‖w‖)2

Hence (4) follows by taking positive square roots.

It is worth noting that the usual triangle inequality for absolute values,

|r+ s|≤ |r|+ |s| for all real numbers r and s

is a special case of (4) where V = R= R1 and the dot product 〈r, s〉= rs is used.
In many calculations in an inner product space, it is required to show that some vector v is zero. This

is often accomplished most easily by showing that its norm ‖v‖ is zero. Here is an example.

Example 10.1.9

Let {v1, . . . , vn} be a spanning set for an inner product space V . If v in V satisfies 〈v, vi〉= 0 for
each i = 1, 2, . . . , n, show that v = 0.
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Solution. Write v = r1v1 + · · ·+ rnvn, ri in R. To show that v = 0, we show that ‖v‖2 = 〈v, v〉= 0.
Compute:

〈v, v〉= 〈v, r1v1 + · · ·+ rnvn〉= r1〈v, v1〉+ · · ·+ rn〈v, vn〉= 0

by hypothesis, and the result follows.

The norm properties in Theorem 10.1.5 translate to the following properties of distance familiar from
geometry. The proof is Exercise 10.1.21.

Theorem 10.1.6

Let V be an inner product space.

1. d (v, w)≥ 0 for all v, w in V .

2. d (v, w) = 0 if and only if v = w.

3. d (v, w) = d (w, v) for all v and w in V .

4. d (v, w)≤ d (v, u)+ d (u, w) for all v, u, and w in V .

Exercises for 10.1

Exercise 10.1.1 In each case, determine which of ax-
ioms P1–P5 fail to hold.

a. V =R2, 〈(x1, y1), (x2, y2)〉= x1y1x2y2

b. V =R3,
〈(x1, x2, x3), (y1, y2, y3)〉= x1y1− x2y2 + x3y3

c. V =C, 〈z, w〉= zw, where w is complex conjuga-
tion

d. V = P3, 〈p(x), q(x)〉 = p(1)q(1)

e. V = M22, 〈A, B〉= det (AB)

f. V = F[0, 1], 〈 f , g〉= f (1)g(0)+ f (0)g(1)

Exercise 10.1.2 Let V be an inner product space. If
U ⊆ V is a subspace, show that U is an inner product
space using the same inner product.

Exercise 10.1.3 In each case, find a scalar multiple of v

that is a unit vector.

a. v = f in C[0, 1] where f (x) = x2

〈 f , g〉
∫ 1

0 f (x)g(x)dx

b. v = f in C[−π , π] where f (x) = cosx

〈 f , g〉
∫ π
−π f (x)g(x)dx

c. v =

[
1
3

]
in R2 where 〈v, w〉= vT

[
1 1
1 2

]
w

d. v =

[
3
−1

]
in R2, 〈v, w〉= vT

[
1 −1
−1 2

]
w

Exercise 10.1.4 In each case, find the distance between
u and v.

a. u = (3, −1, 2, 0), v = (1, 1, 1, 3);〈u, v〉= u ·v

b. u = (1, 2, −1, 2), v = (2, 1, −1, 3);〈u, v〉= u ·v

c. u = f , v = g in C[0, 1] where f (x) = x2 and
g(x) = 1− x; 〈 f , g〉=

∫ 1
0 f (x)g(x)dx

d. u = f , v = g in C[−π , π] where f (x) = 1 and
g(x) = cosx; 〈 f , g〉=

∫ π
−π f (x)g(x)dx

Exercise 10.1.5 Let a1, a2, . . . , an be positive numbers.
Given v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn),
define 〈v, w〉= a1v1w1 + · · ·+anvnwn. Show that this is
an inner product on Rn.
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Exercise 10.1.6 If {b1, . . . , bn} is a basis of V and if
v = v1b1+ · · ·+vnbn and w = w1b1+ · · ·+wnbn are vec-
tors in V , define

〈v, w〉= v1w1 + · · ·+ vnwn.

Show that this is an inner product on V .

Exercise 10.1.7 If p = p(x) and q = q(x) are polynomi-
als in Pn, define

〈p, q〉= p(0)q(0)+ p(1)q(1)+ · · ·+ p(n)q(n)

Show that this is an inner product on Pn.
[Hint for P5: Theorem 6.5.4 or Appendix D.]

Exercise 10.1.8 Let Dn denote the space of all func-
tions from the set {1, 2, 3, . . . , n} to R with pointwise
addition and scalar multiplication (see Exercise 6.3.35).
Show that 〈 , 〉 is an inner product on Dn if
〈f, g〉= f (1)g(1)+ f (2)g(2)+ · · ·+ f (n)g(n).

Exercise 10.1.9 Let re (z) denote the real part of the
complex number z. Show that 〈 , 〉 is an inner product on
C if 〈z, w〉= re (zw).

Exercise 10.1.10 If T : V →V is an isomorphism of the
inner product space V , show that

〈v, w〉1 = 〈T (v), T (w)〉

defines a new inner product 〈 , 〉1 on V .

Exercise 10.1.11 Show that every inner product 〈 , 〉
on Rn has the form 〈x, y〉= (Ux) · (Uy) for some upper
triangular matrix U with positive diagonal entries. [Hint:
Theorem 8.3.3.]

Exercise 10.1.12 In each case, show that 〈v, w〉= vT Aw

defines an inner product on R2 and hence show that A is
positive definite.

A =

[
2 1
1 1

]
a. A =

[
5 −3
−3 2

]
b.

A =

[
3 2
2 3

]
c. A =

[
3 4
4 6

]
d.

Exercise 10.1.13 In each case, find a symmetric matrix
A such that 〈v, w〉= vT Aw.

a.
〈[

v1
v2

]
,
[

w1
w2

]〉
= v1w1 +2v1w2 +2v2w1 +5v2w2

b.
〈[

v1
v2

]
,
[

w1
w2

]〉
= v1w1− v1w2− v2w1 + 2v2w2

c.

〈


v1
v2
v3



 ,




w1
w2
w3




〉

= 2v1w1 + v2w2 + v3w3− v1w2

− v2w1 + v2w3 + v3w2

d.

〈


v1
v2
v3



 ,




w1
w2
w3




〉

= v1w1 + 2v2w2 + 5v3w3

− 2v1w3− 2v3w1

Exercise 10.1.14 If A is symmetric and xT Ax = 0 for
all columns x in Rn, show that A = 0. [Hint: Consider
〈x+y, x+y〉 where 〈x, y〉= xT Ay.]

Exercise 10.1.15 Show that the sum of two inner prod-
ucts on V is again an inner product.

Exercise 10.1.16 Let ‖u‖ = 1, ‖v‖ = 2, ‖w‖ =
√

3,
〈u, v〉=−1, 〈u, w〉= 0 and 〈v, w〉= 3. Compute:

〈v+w, 2u−v〉a. 〈u−2v−w, 3w−v〉b.

Exercise 10.1.17 Given the data in Exercise 10.1.16,
show that u+v = w.

Exercise 10.1.18 Show that no vectors exist such that
‖u‖= 1, ‖v‖= 2, and 〈u, v〉=−3.

Exercise 10.1.19 Complete Example 10.1.2.

Exercise 10.1.20 Prove Theorem 10.1.1.

Exercise 10.1.21 Prove Theorem 10.1.6.

Exercise 10.1.22 Let u and v be vectors in an inner
product space V .

a. Expand 〈2u−7v, 3u+5v〉.

b. Expand 〈3u−4v, 5u+v〉.

c. Show that ‖u+v‖2 = ‖u‖2 +2〈u, v〉+‖v‖2.

d. Show that ‖u−v‖2 = ‖u‖2−2〈u, v〉+‖v‖2.

Exercise 10.1.23 Show that

‖v‖2 +‖w‖2 = 1
2{‖v+w‖2 +‖v−w‖2}

for any v and w in an inner product space.

Exercise 10.1.24 Let 〈 , 〉 be an inner product on a vec-
tor space V . Show that the corresponding distance func-
tion is translation invariant. That is, show that
d (v, w) = d (v+u, w+u) for all v, w, and u in V .

Exercise 10.1.25

a. Show that 〈u, v〉 = 1
4 [‖u+v‖2−‖u−v‖2] for all

u, v in an inner product space V .
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b. If 〈 , 〉 and 〈 , 〉′ are two inner products on V that
have equal associated norm functions, show that
〈u, v〉= 〈u, v〉′ holds for all u and v.

Exercise 10.1.26 Let v denote a vector in an inner prod-
uct space V .

a. Show that W = {w | w in V , 〈v, w = 0} is a sub-
space of V .

b. Let W be as in (a). If V =R3 with the dot product,
and if v = (1, −1, 2), find a basis for W .

Exercise 10.1.27 Given vectors w1, w2, . . . , wn and v,
assume that 〈v, wi〉= 0 for each i. Show that 〈v, w〉= 0
for all w in span {w1, w2, . . . , wn}.

Exercise 10.1.28 If V = span{v1, v2, . . . , vn} and
〈v, vi〉= 〈w, vi〉 holds for each i. Show that v = w.

Exercise 10.1.29 Use the Cauchy-Schwarz inequality in
an inner product space to show that:

a. If ‖u‖ ≤ 1, then 〈u, v〉2 ≤ ‖v‖2 for all v in V .

b. (xcos θ + ysinθ)2 ≤ x2 + y2 for all real x, y, and
θ .

c. ‖r1v1+ · · ·+ rnvn‖2 ≤ [r1‖v1‖+ · · ·+ rn‖vn‖]2 for
all vectors vi, and all ri > 0 in R.

Exercise 10.1.30 If A is a 2× n matrix, let u and v de-
note the rows of A.

a. Show that AAT =

[
‖u‖2 u ·v
u ·v ‖v‖2

]
.

b. Show that det (AAT )≥ 0.

Exercise 10.1.31

a. If v and w are nonzero vectors in an inner product
space V , show that −1 ≤ 〈v, w〉

‖v‖‖w‖ ≤ 1, and hence
that a unique angle θ exists such that
〈v, w〉
‖v‖‖w‖ = cosθ and 0 ≤ θ ≤ π . This angle θ is
called the angle between v and w.

b. Find the angle between v = (1, 2, −1, 13) and
w = (2, 1, 0, 2, 0) in R5 with the dot product.

c. If θ is the angle between v and w, show that the
law of cosines is valid:

‖v−w‖= ‖v‖2 +‖w‖2−2‖v‖‖w‖cosθ .

Exercise 10.1.32 If V = R2, define ‖(x, y)‖= |x|+ |y|.

a. Show that ‖ · ‖ satisfies the conditions in Theo-
rem 10.1.5.

b. Show that ‖ · ‖ does not arise from an inner prod-
uct on R2 given by a matrix A. [Hint: If it did, use
Theorem 10.1.2 to find numbers a, b, and c such
that ‖(x, y)‖2 = ax2 +bxy+ cy2 for all x and y.]

10.2 Orthogonal Sets of Vectors

The idea that two lines can be perpendicular is fundamental in geometry, and this section is devoted to
introducing this notion into a general inner product space V . To motivate the definition, recall that two
nonzero geometric vectors x and y in Rn are perpendicular (or orthogonal) if and only if x · y = 0. In
general, two vectors v and w in an inner product space V are said to be orthogonal if

〈v, w〉= 0

A set {f1, f2, . . . , fn} of vectors is called an orthogonal set of vectors if

1. Each fi #= 0.

2. 〈fi, f j〉= 0 for all i #= j.

If, in addition, ‖fi‖= 1 for each i, the set {f1, f2, . . . , fn} is called an orthonormal set.
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Example 10.2.1

{sinx, cosx} is orthogonal in C[−π , π ] because
∫ π

−π
sin x cos x dx =

[
−1

4 cos 2x
]π
−π = 0

The first result about orthogonal sets extends Pythagoras’ theorem in Rn (Theorem 5.3.4) and the same
proof works.

Theorem 10.2.1: Pythagoras’ Theorem

If {f1, f2, . . . , fn} is an orthogonal set of vectors, then

‖f1 + f2 + · · ·+ fn‖2 = ‖f1‖2 +‖f2‖2 + · · ·+‖fn‖2

The proof of the next result is left to the reader.

Theorem 10.2.2

Let {f1, f2, . . . , fn} be an orthogonal set of vectors.

1. {r1f1, r2f2, . . . , rnfn} is also orthogonal for any ri #= 0 in R.

2.
{

1
‖f1‖

f1, 1
‖f2‖

f2, . . . , 1
‖fn‖fn

}
is an orthonormal set.

As before, the process of passing from an orthogonal set to an orthonormal one is called normalizing the
orthogonal set. The proof of Theorem 5.3.5 goes through to give

Theorem 10.2.3

Every orthogonal set of vectors is linearly independent.

Example 10.2.2

Show that









2
−1

0



 ,




0
1
1



 ,




0
−1

2








 is an orthogonal basis of R3 with inner product

〈v, w〉= vT Aw, where A =




1 1 0
1 2 0
0 0 1





Solution. We have
〈


2
−1

0



 ,




0
1
1




〉

=
[

2 −1 0
]



1 1 0
1 2 0
0 0 1








0
1
1



=
[

1 0 0
]



0
1
1



= 0
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and the reader can verify that the other pairs are orthogonal too. Hence the set is orthogonal, so it
is linearly independent by Theorem 10.2.3. Because dim R3 = 3, it is a basis.

The proof of Theorem 5.3.6 generalizes to give the following:

Theorem 10.2.4: Expansion Theorem

Let {f1, f2, . . . , fn} be an orthogonal basis of an inner product space V . If v is any vector in V , then

v = 〈v, f1〉
‖f1‖2 f1 +

〈v, f2〉
‖f2‖2 f2 + · · ·+ 〈v, fn〉

‖fn‖2 fn

is the expansion of v as a linear combination of the basis vectors.

The coefficients 〈v, f1〉
‖f1‖2 , 〈v, f2〉

‖f2‖2 , . . . , 〈v, fn〉
‖fn‖2 in the expansion theorem are sometimes called the Fourier

coefficients of v with respect to the orthogonal basis {f1, f2, . . . , fn}. This is in honour of the French
mathematician J.B.J. Fourier (1768–1830). His original work was with a particular orthogonal set in the
space C[a, b], about which there will be more to say in Section 10.5.

Example 10.2.3

If a0, a1, . . . , an are distinct numbers and p(x) and q(x) are in Pn, define

〈p(x), q(x)〉= p(a0)q(a0)+ p(a1)q(a1)+ · · ·+ p(an)q(an)

This is an inner product on Pn. (Axioms P1–P4 are routinely verified, and P5 holds because 0 is
the only polynomial of degree n with n+1 distinct roots. See Theorem 6.5.4 or Appendix D.)
Recall that the Lagrange polynomials δ0(x), δ1(x), . . . , δn(x) relative to the numbers
a0, a1, . . . , an are defined as follows (see Section 6.5):

δk(x) =
∏i#=k(x−ai)

∏i#=k(ak−ai)
k = 0, 1, 2, . . . , n

where ∏i #=k(x−ai) means the product of all the terms

(x−a0), (x−a1), (x−a2), . . . , (x−an)

except that the kth term is omitted. Then {δ0(x), δ1(x), . . . , δn(x)} is orthonormal with respect to
〈 , 〉 because δk(ai) = 0 if i #= k and δk(ak) = 1. These facts also show that 〈p(x), δk(x)〉= p(ak)
so the expansion theorem gives

p(x) = p(a0)δ0(x)+ p(a1)δ1(x)+ · · ·+ p(an)δn(x)

for each p(x) in Pn. This is the Lagrange interpolation expansion of p(x), Theorem 6.5.3, which
is important in numerical integration.
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Lemma 10.2.1: Orthogonal Lemma

Let {f1, f2, . . . , fm} be an orthogonal set of vectors in an inner product space V , and let v be any
vector not in span{f1, f2, . . . , fm}. Define

fm+1 = v− 〈v, f1〉
‖f1‖2 f1− 〈v, f2〉

‖f2‖2 f2− · · ·− 〈v, fm〉
‖fm‖2 fm

Then {f1, f2, . . . , fm, fm+1} is an orthogonal set of vectors.

The proof of this result (and the next) is the same as for the dot product in Rn (Lemma 8.1.1 and
Theorem 8.1.2).

Theorem 10.2.5: Gram-Schmidt Orthogonalization Algorithm

Let V be an inner product space and let {v1, v2, . . . , vn} be any basis of V . Define vectors
f1, f2, . . . , fn in V successively as follows:

f1 = v1

f2 = v2−〈v2, f1〉
‖f1‖2 f1

f3 = v3−〈v3, f1〉
‖f1‖2 f1− 〈v3, f2〉

‖f2‖2 f2
...

...
fk = vk −

〈vk, f1〉
‖f1‖2 f1− 〈vk, f2〉

‖f2‖2 f2− · · ·− 〈vk, fk−1〉
‖fk−1‖2 fk−1

for each k = 2, 3, . . . , n. Then

1. {f1, f2, . . . , fn} is an orthogonal basis of V .

2. span{f1, f2, . . . , fk}= span{v1, v2, . . . , vk} holds for each k = 1, 2, . . . , n.

The purpose of the Gram-Schmidt algorithm is to convert a basis of an inner product space into an or-

thogonal basis. In particular, it shows that every finite dimensional inner product space has an orthogonal
basis.

Example 10.2.4

Consider V = P3 with the inner product 〈p, q〉=
∫ 1
−1 p(x)q(x)dx. If the Gram-Schmidt algorithm

is applied to the basis {1, x, x2, x3}, show that the result is the orthogonal basis

{1, x, 1
3(3x2−1), 1

5(5x3−3x)}

Solution. Take f1 = 1. Then the algorithm gives

f2 = x− 〈x, f1〉
‖f1‖2 f1 = x− 0

2 f1 = x

f3 = x2− 〈x
2, f1〉
‖f1‖2 f1− 〈x

2, f2〉
‖f2‖2 f2

= x2−
2
3
2 1− 0

2
3

x
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= 1
3(3x2−1)

The verification that f4 =
1
5(5x3−3x) is omitted.

The polynomials in Example 10.2.4 are such that the leading coefficient is 1 in each case. In other contexts
(the study of differential equations, for example) it is customary to take multiples p(x) of these polynomials
such that p(1) = 1. The resulting orthogonal basis of P3 is

{1, x, 1
3(3x2−1), 1

5(5x3−3x)}

and these are the first four Legendre polynomials, so called to honour the French mathematician A. M.
Legendre (1752–1833). They are important in the study of differential equations.

If V is an inner product space of dimension n, let E = {f1, f2, . . . , fn} be an orthonormal basis of V

(by Theorem 10.2.5). If v = v1f1 + v2f2 + · · ·+ vnfn and w = w1f1 +w2f2 + · · ·+wnfn are two vectors in
V , we have CE(v) =

[
v1 v2 · · · vn

]T and CE(w) =
[

w1 w2 · · · wn

]T . Hence

〈v, w〉= 〈∑
i

vifi, ∑
j

w jf j〉= ∑
i, j

viw j〈fi, f j〉= ∑
i

viwi =CE(v) ·CE(w)

This shows that the coordinate isomorphism CE : V → Rn preserves inner products, and so proves

Corollary 10.2.1

If V is any n-dimensional inner product space, then V is isomorphic to Rn as inner product spaces.
More precisely, if E is any orthonormal basis of V , the coordinate isomorphism

CE : V → Rn satisfies 〈v, w〉=CE(v) ·CE(w)

for all v and w in V .

The orthogonal complement of a subspace U of Rn was defined (in Chapter 8) to be the set of all vectors
in Rn that are orthogonal to every vector in U . This notion has a natural extension in an arbitrary inner
product space. Let U be a subspace of an inner product space V . As in Rn, the orthogonal complement

U⊥ of U in V is defined by

U⊥ = {v | v ∈V , 〈v, u〉= 0 for all u ∈U}

Theorem 10.2.6

Let U be a finite dimensional subspace of an inner product space V .

1. U⊥ is a subspace of V and V =U⊕U⊥.

2. If dim V = n, then dim U + dim U⊥ = n.

3. If dim V = n, then U⊥⊥ =U .

Proof.
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1. U⊥ is a subspace by Theorem 10.1.1. If v is in U ∩U⊥, then 〈v, v〉 = 0, so v = 0 again by Theo-
rem 10.1.1. Hence U ∩U⊥ = {0}, and it remains to show that U +U⊥ =V . Given v in V , we must
show that v is in U +U⊥, and this is clear if v is in U . If v is not in U , let {f1, f2, . . . , fm} be an or-

thogonal basis of U . Then the orthogonal lemma shows that v−
(
〈v, f1〉
‖f1‖2 f1 +

〈v, f2〉
‖f2‖2 f2 + · · ·+ 〈v, fm〉

‖fm‖2 fm

)

is in U⊥, so v is in U +U⊥ as required.

2. This follows from Theorem 9.3.6.

3. We have dim U⊥⊥= n− dim U⊥= n−(n− dim U)= dim U , using (2) twice. As U ⊆U⊥⊥ always
holds (verify), (3) follows by Theorem 6.4.2.

We digress briefly and consider a subspace U of an arbitrary vector space V . As in Section 9.3, if W

is any complement of U in V , that is, V =U⊕W , then each vector v in V has a unique representation as a
sum v = u+w where u is in U and w is in W . Hence we may define a function T : V →V as follows:

T (v) = u where v = u+w, u in U , w in W

Thus, to compute T (v), express v in any way at all as the sum of a vector u in U and a vector in W ; then
T (v) = u.

This function T is a linear operator on V . Indeed, if v1 = u1 +w1 where u1 is in U and w1 is in W ,
then v+v1 = (u+u1)+(w+w1) where u+u1 is in U and w+w1 is in W , so

T (v+v1) = u+u1 = T (v)+T (v1)

Similarly, T (av) = aT (v) for all a in R, so T is a linear operator. Furthermore, im T =U and ker T =W

as the reader can verify, and T is called the projection on U with kernel W .
If U is a subspace of V , there are many projections on U , one for each complementary subspace W

with V =U⊕W . If V is an inner product space, we single out one for special attention. Let U be a finite
dimensional subspace of an inner product space V .

Definition 10.3 Orthogonal Projection on a Subspace

The projection on U with kernel U⊥ is called the orthogonal projection on U (or simply the
projection on U ) and is denoted projU : V →V .

Theorem 10.2.7: Projection Theorem

Let U be a finite dimensional subspace of an inner product space V and let v be a vector in V .

1. projU : V →V is a linear operator with image U and kernel U⊥.

2. projU v is in U and v− projU v is in U⊥.

3. If {f1, f2, . . . , fm} is any orthogonal basis of U , then

projU v = 〈v, f1〉
‖f1‖2 f1 +

〈v, f2〉
‖f2‖2 f2 + · · ·+ 〈v, fm〉

‖fm‖2 fm
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Proof. Only (3) remains to be proved. But since {f1, f2, . . . , fn} is an orthogonal basis of U and since
projU v is in U , the result follows from the expansion theorem (Theorem 10.2.4) applied to the finite
dimensional space U .

Note that there is no requirement in Theorem 10.2.7 that V is finite dimensional.

Example 10.2.5

Let U be a subspace of the finite dimensional inner product space V . Show that
projU⊥ v = v− projU v for all v ∈V .

Solution. We have V =U⊥⊕U⊥⊥ by Theorem 10.2.6. If we write p = projU v, then
v = (v−p)+p where v−p is in U⊥ and p is in U =U⊥⊥ by Theorem 10.2.7. Hence
projU⊥ v = v−p. See Exercise 8.1.7.

v

v− projU v

projU v
0

U

The vectors v, projU v, and v− projU v in Theorem 10.2.7 can be visu-
alized geometrically as in the diagram (where U is shaded and dim U = 2).
This suggests that projU v is the vector in U closest to v. This is, in fact,
the case.

Theorem 10.2.8: Approximation Theorem

Let U be a finite dimensional subspace of an inner product space V . If v is any vector in V , then
projU v is the vector in U that is closest to v. Here closest means that

‖v− projU v‖< ‖v−u‖

for all u in U , u #= projU v.

Proof. Write p = projU v, and consider v−u = (v−p)+(p−u). Because v−p is in U⊥ and p−u is in
U , Pythagoras’ theorem gives

‖v−u‖2 = ‖v−p‖2 +‖p−u‖2 > ‖v−p‖2

because p−u #= 0. The result follows.

Example 10.2.6

Consider the space C[−1, 1] of real-valued continuous functions on the interval [−1, 1] with inner
product 〈 f , g〉=

∫ 1
−1 f (x)g(x)dx. Find the polynomial p = p(x) of degree at most 2 that best

approximates the absolute-value function f given by f (x) = |x|.

Solution. Here we want the vector p in the subspace U = P2 of C[−1, 1] that is closest to f . In
Example 10.2.4 the Gram-Schmidt algorithm was applied to give an orthogonal basis
{f1 = 1, f2 = x, f3 = 3x2−1} of P2 (where, for convenience, we have changed f3 by a numerical
factor). Hence the required polynomial is
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-1 1O

y = f (x)

y = p(x)

x

y
p = projP2

f

= 〈 f , f1〉
‖f1‖2 f1 +

〈 f , f2〉
‖f2‖2 f2 +

〈 f , f3〉
‖f3‖2 f3

= 1
2f1 +0f2 +

1/2
8/5 f3

= 3
16(5x2 +1)

The graphs of p(x) and f (x) are given in the diagram.

If polynomials of degree at most n are allowed in Example 10.2.6, the polynomial in Pn is projPn
f ,

and it is calculated in the same way. Because the subspaces Pn get larger as n increases, it turns out that the
approximating polynomials projPn

f get closer and closer to f . In fact, solving many practical problems
comes down to approximating some interesting vector v (often a function) in an infinite dimensional inner
product space V by vectors in finite dimensional subspaces (which can be computed). If U1 ⊆U2 are finite
dimensional subspaces of V , then

‖v− projU2
v‖ ≤ ‖v− projU1

v‖

by Theorem 10.2.8 (because projU1
v lies in U1 and hence in U2). Thus projU2

v is a better approximation
to v than projU1

v. Hence a general method in approximation theory might be described as follows: Given
v, use it to construct a sequence of finite dimensional subspaces

U1 ⊆U2 ⊆U3 ⊆ · · ·

of V in such a way that ‖v− projUk
v‖ approaches zero as k increases. Then projUk

v is a suitable ap-
proximation to v if k is large enough. For more information, the interested reader may wish to consult
Interpolation and Approximation by Philip J. Davis (New York: Blaisdell, 1963).

Exercises for 10.2

Use the dot product in Rn unless otherwise in-
structed.
Exercise 10.2.1 In each case, verify that B is an orthog-
onal basis of V with the given inner product and use the
expansion theorem to express v as a linear combination
of the basis vectors.

a. v =

[
a

b

]
, B =

{[
1
−1

]
,
[

1
0

]}
, V = R2,

〈v, w〉= vT Aw where A =

[
2 2
2 5

]

b. v =




a

b

c



, B =









1
1
1



 ,




−1

0
1



 ,




1
−6

1








,

V = R3, 〈v, w〉= vT Aw where A =




2 0 1
0 1 0
1 0 2





c. v = a+bx+ cx2, B = {1x, 2−3x2}, V = P2,
〈p, q〉= p(0)q(0)+ p(1)q(1)+ p(−1)q(−1)

d. v =

[
a b

c d

]
,

B=

{[
1 0
0 1

]
,
[

1 0
0 −1

]
,
[

0 1
1 0

]
,
[

0 1
−1 0

]}
,

V = M22, 〈X , Y 〉= tr (XY T )

Exercise 10.2.2 Let R3 have the inner product
〈(x, y, z), (x′, y′, z′)〉 = 2xx′+ yy′+ 3zz′. In each case,
use the Gram-Schmidt algorithm to transform B into an
orthogonal basis.
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a. B = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}

b. B = {(1, 1, 1), (1, −1, 1), (1, 1, 0)}

Exercise 10.2.3 Let M22 have the inner product
〈X , Y 〉= tr (XY T ). In each case, use the Gram-Schmidt
algorithm to transform B into an orthogonal basis.

a. B =

{[
1 1
0 0

]
,
[

1 0
1 0

]
,
[

0 1
0 1

]
,
[

1 0
0 1

]}

b. B =

{[
1 1
0 1

]
,
[

1 0
1 1

]
,
[

1 0
0 1

]
,
[

1 0
0 0

]}

Exercise 10.2.4 In each case, use the Gram-Schmidt
process to convert the basis B = {1, x, x2} into an or-
thogonal basis of P2.

a. 〈p, q〉= p(0)q(0)+ p(1)q(1)+ p(2)q(2)

b. 〈p, q〉=
∫ 2

0 p(x)q(x)dx

Exercise 10.2.5 Show that {1, x− 1
2 , x2− x+ 1

6}, is an
orthogonal basis of P2 with the inner product

〈p, q〉=
∫ 1

0
p(x)q(x)dx

and find the corresponding orthonormal basis.

Exercise 10.2.6 In each case find U⊥ and compute
dim U and dim U⊥.

a. U = span{(1, 1, 2, 0), (3, −1, 2, 1),
(1, −3, −2, 1)} in R4

b. U = span{(1, 1, 0, 0)} in R4

c. U = span{1, x} in P2 with
〈p, q〉= p(0)q(0)+ p(1)q(1)+ p(2)q(2)

d. U = span{x} in P2 with 〈p, q〉=
∫ 1

0 p(x)q(x)dx

e. U = span
{[

1 0
0 1

]
,
[

1 1
0 0

]}
in M22 with

〈X , Y 〉= tr (XY T )

f. U = span
{[

1 1
0 0

]
,
[

1 0
1 0

]
,
[

1 0
1 1

]}
in

M22 with 〈X , Y 〉= tr (XY T )

Exercise 10.2.7 Let 〈X , Y 〉= tr (XY T ) in M22. In each
case find the matrix in U closest to A.

a. U = span
{[

1 0
0 1

]
,
[

1 1
1 1

]}
,

A =

[
1 −1
2 3

]

b. U = span
{[

1 0
0 1

]
,
[

1 1
1 −1

]
,
[

1 1
0 0

]}
,

A =

[
2 1
3 2

]

Exercise 10.2.8 In P2, let

〈p(x), q(x)〉 = p(0)q(0)+ p(1)q(1)+ p(2)q(2)

In each case find the polynomial in U closest to f (x).

a. U = span{1+ x, x2}, f (x) = 1+ x2

b. U = span{1, 1+ x2}; f (x) = x

Exercise 10.2.9 Using the inner product given by
〈p, q〉 =

∫ 1
0 p(x)q(x)dx on P2, write v as the sum of a

vector in U and a vector in U⊥.

a. v = x2, U = span{x+1, 9x−5}

b. v = x2 +1, U = span {1, 2x−1}

Exercise 10.2.10

a. Show that {u, v} is orthogonal if and only if
‖u+v‖2 = ‖u‖2 +‖v‖2.

b. If u = v = (1, 1) and w = (−1, 0), show that
‖u+v+w‖2 = ‖u‖2+‖v‖2+‖w‖2 but {u, v, w}
is not orthogonal. Hence the converse to Pythago-
ras’ theorem need not hold for more than two vec-
tors.

Exercise 10.2.11 Let v and w be vectors in an inner
product space V . Show that:

a. v is orthogonal to w if and only if
‖v+w‖= ‖v−w‖.

b. v + w and v−w are orthogonal if and only if
‖v‖= ‖w‖.
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Exercise 10.2.12 Let U and W be subspaces of an n-
dimensional inner product space V . Suppose 〈u, v〉 = 0
for all u ∈U and w ∈W and dim U + dim W = n. Show
that U⊥ =W .

Exercise 10.2.13 If U and W are subspaces of an inner
product space, show that (U +W)⊥ =U⊥∩W⊥.

Exercise 10.2.14 If X is any set of vectors in an inner
product space V , define

X⊥ = {v | v in V , 〈v, x〉= 0 for all x in X}

a. Show that X⊥ is a subspace of V .

b. If U = span{u1, u2, . . . , um}, show that
U⊥ = {u1, . . . , um}⊥.

c. If X ⊆ Y , show that Y⊥ ⊆ X⊥.

d. Show that X⊥∩Y⊥ = (X ∪Y )⊥.

Exercise 10.2.15 If dim V = n and w #= 0 in V , show
that dim{v | v in V , 〈v, w〉= 0}= n−1.

Exercise 10.2.16 If the Gram-Schmidt process is used
on an orthogonal basis {v1, . . . , vn} of V , show that
fk = vk holds for each k = 1, 2, . . . , n. That is, show
that the algorithm reproduces the same basis.

Exercise 10.2.17 If {f1, f2, . . . , fn−1} is orthonormal in
an inner product space of dimension n, prove that there
are exactly two vectors fn such that {f1, f2, . . . , fn−1, fn}
is an orthonormal basis.

Exercise 10.2.18 Let U be a finite dimensional subspace
of an inner product space V , and let v be a vector in V .

a. Show that v lies in U if and only if v = projU (v).

b. If V = R3, show that (−5, 4, −3) lies in
span{(3, −2, 5), (−1, 1, 1)} but that (−1, 0, 2)
does not.

Exercise 10.2.19 Let n #= 0 and w #= 0 be nonparallel
vectors in R3 (as in Chapter 4).

a. Show that
{

n, n×w, w− n·w
‖n‖2 n

}
is an orthogo-

nal basis of R3.

b. Show that span
{

n×w, w− n·w
‖n‖2 n

}
is the plane

through the origin with normal n.

Exercise 10.2.20 Let E = {f1, f2, . . . , fn} be an or-
thonormal basis of V .

a. Show that 〈v, w〉=CE(v) ·CE(w) for all 〈v, w〉 in
V .

b. If P = [pi j] is an n×n matrix, define
bi = pi1f1 + · · ·+ pinfn for each i. Show that
B = {b1, b2, . . . , bn} is an orthonormal basis if
and only if P is an orthogonal matrix.

Exercise 10.2.21 Let {f1, . . . , fn} be an orthogonal ba-
sis of V . If v and w are in V , show that

〈v, w〉= 〈v, f1〉〈w, f1〉
‖f1‖2 + · · ·+ 〈v, fn〉〈w, fn〉

‖fn‖2

Exercise 10.2.22 Let {f1, . . . , fn} be an orthonormal
basis of V , and let v = v1f1 + · · ·+ vnfn and
w = w1f1 + · · ·+wnfn. Show that

〈v, w〉= v1w1 + · · ·+ vnwn

and
‖v‖2 = v2

1 + · · ·+ v2
n

(Parseval’s formula).

Exercise 10.2.23 Let v be a vector in an inner product
space V .

a. Show that ‖v‖ ≥ ‖ projU v‖ holds for all finite di-
mensional subspaces U . [Hint: Pythagoras’ theo-
rem.]

b. If {f1, f2, . . . , fm} is any orthogonal set in V , prove
Bessel’s inequality:

〈v, f1〉2
‖f1‖2 + · · ·+ 〈v, fm〉2

‖fm‖2 ≤ ‖v‖2

Exercise 10.2.24 Let B = {f1, f2, . . . , fn} be an orthog-
onal basis of an inner product space V . Given v ∈ V ,
let θi be the angle between v and fi for each i (see Exer-
cise 10.1.31). Show that

cos2 θ1 + cos2 θ2 + · · ·+ cos2 θn = 1

[The cosθi are called direction cosines for v correspond-
ing to B.]
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Exercise 10.2.25

a. Let S denote a set of vectors in a finite dimen-
sional inner product space V , and suppose that
〈u, v〉 = 0 for all u in S implies v = 0. Show
that V = span S. [Hint: Write U = span S and
use Theorem 10.2.6.]

b. Let A1, A2, . . . , Ak be n× n matrices. Show that
the following are equivalent.

i. If Aib = 0 for all i (where b is a column in
Rn), then b = 0.

ii. The set of all rows of the matrices Ai spans
Rn.

Exercise 10.2.26 Let [xi) = (x1, x2, . . . ) denote a se-
quence of real numbers xi, and let

V = {[xi) | only finitely many xi #= 0}

Define componentwise addition and scalar multiplication
on V as follows:

[xi)+ [yi) = [xi + yi), and a[xi) = [axi) for a in R.

Given [xi) and [yi) in V , define 〈[xi), [yi)〉 =
∞

∑
i=0

xiyi.

(Note that this makes sense since only finitely many xi

and yi are nonzero.) Finally define

U = {[xi) in V |
∞

∑
i=0

xi = 0}

a. Show that V is a vector space and that U is a sub-
space.

b. Show that 〈 , 〉 is an inner product on V .

c. Show that U⊥ = {0}.

d. Hence show that U ⊕U⊥ #=V and U #=U⊥⊥.

10.3 Orthogonal Diagonalization

There is a natural way to define a symmetric linear operator T on a finite dimensional inner product
space V . If T is such an operator, it is shown in this section that V has an orthogonal basis consisting of
eigenvectors of T . This yields another proof of the principal axes theorem in the context of inner product
spaces.

Theorem 10.3.1

Let T : V →V be a linear operator on a finite dimensional space V . Then the following conditions
are equivalent.

1. V has a basis consisting of eigenvectors of T .

2. There exists a basis B of V such that MB(T ) is diagonal.

Proof. We have MB(T ) =
[

CB[T (b1)] CB[T (b2)] · · · CB[T (bn)]
]

where B = {b1, b2, . . . , bn} is any
basis of V . By comparing columns:

MB(T ) =





λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn




if and only if T (bi) = λibi for each i

Theorem 10.3.1 follows.
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Definition 10.4 Diagonalizable Linear Operators

A linear operator T on a finite dimensional space V is called diagonalizable if V has a basis
consisting of eigenvectors of T .

Example 10.3.1

Let T : P2→ P2 be given by

T (a+bx+ cx2) = (a+4c)−2bx+(3a+2c)x2

Find the eigenspaces of T and hence find a basis of eigenvectors.

Solution. If B0 = {1, x, x2}, then

MB0(T ) =




1 0 4
0 −2 0
3 0 2





so cT (x) = (x+2)2(x−5), and the eigenvalues of T are λ =−2 and λ = 5. One sees that







0
1
0



 ,




4
0
−3



 ,




1
0
1








 is a basis of eigenvectors of MB0(T ), so B = {x, 4−3x2, 1+x2} is a

basis of P2 consisting of eigenvectors of T .

If V is an inner product space, the expansion theorem gives a simple formula for the matrix of a linear
operator with respect to an orthogonal basis.

Theorem 10.3.2

Let T : V →V be a linear operator on an inner product space V . If B = {b1, b2, . . . , bn} is an
orthogonal basis of V , then

MB(T ) =
[
〈bi, T (b j)〉
‖bi‖2

]

Proof. Write MB(T ) =
[
ai j

]
. The jth column of MB(T ) is CB[T (e j)], so

T (b j) = a1 jb1 + · · ·+ai jbi + · · ·+an jbn

On the other hand, the expansion theorem (Theorem 10.2.4) gives

v = 〈b1, v〉
‖b1‖2 b1 + · · ·+ 〈bi, v〉

‖bi‖2 bi + · · ·+ 〈bn, v〉
‖bn‖2 bn

for any v in V . The result follows by taking v = T (b j).
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Example 10.3.2

Let T : R3→ R3 be given by

T (a, b, c) = (a+2b− c, 2a+3c, −a+3b+2c)

If the dot product in R3 is used, find the matrix of T with respect to the standard basis
B = {e1, e2, e3} where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

Solution. The basis B is orthonormal, so Theorem 10.3.2 gives

MB(T ) =




e1 ·T (e1) e1 ·T (e2) e1 ·T (e3)
e2 ·T (e1) e2 ·T (e2) e2 ·T (e3)
e3 ·T (e1) e3 ·T (e2) e3 ·T (e3)



=




1 2 −1
2 0 3
−1 3 2





Of course, this can also be found in the usual way.

It is not difficult to verify that an n×n matrix A is symmetric if and only if x · (Ay) = (Ax) ·y holds for
all columns x and y in Rn. The analog for operators is as follows:

Theorem 10.3.3

Let V be a finite dimensional inner product space. The following conditions are equivalent for a
linear operator T : V →V .

1. 〈v, T (w)〉= 〈T (v), w〉 for all v and w in V .

2. The matrix of T is symmetric with respect to every orthonormal basis of V .

3. The matrix of T is symmetric with respect to some orthonormal basis of V .

4. There is an orthonormal basis B = {f1, f2, . . . , fn} of V such that 〈fi, T (f j)〉= 〈T (fi), f j〉
holds for all i and j.

Proof. (1) ⇒ (2). Let B = {f1, . . . , fn} be an orthonormal basis of V , and write MB(T ) =
[
ai j

]
. Then

ai j = 〈fi, T (f j)〉 by Theorem 10.3.2. Hence (1) and axiom P2 give

ai j = 〈fi, T (f j)〉= 〈T (fi), f j〉= 〈f j, T (fi)〉= a ji

for all i and j. This shows that MB(T ) is symmetric.
(2)⇒ (3). This is clear.
(3)⇒ (4). Let B = {f1, . . . , fn} be an orthonormal basis of V such that MB(T ) is symmetric. By (3)

and Theorem 10.3.2, 〈fi, T (f j)〉= 〈f j, T (fi)〉 for all i and j, so (4) follows from axiom P2.

(4)⇒ (1). Let v and w be vectors in V and write them as v =
n

∑
i=1

vifi and w =
n

∑
j=1

wjf j. Then

〈v, T (w)〉=

〈

∑
i

vifi, ∑
j

w jT f j

〉

= ∑
i

∑
j

viw j〈fi, T (f j)〉
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= ∑
i

∑
j

viw j〈T (fi), f j〉

=

〈

∑
i

viT (fi), ∑
j

w jf j

〉

= 〈T (v), w〉

where we used (4) at the third stage. This proves (1).

A linear operator T on an inner product space V is called symmetric if 〈v, T (w)〉= 〈T (v), w〉 holds for
all v and w in V .

Example 10.3.3

If A is an n×n matrix, let TA : Rn→Rn be the matrix operator given by TA(v) = Av for all
columns v. If the dot product is used in Rn, then TA is a symmetric operator if and only if A is a
symmetric matrix.

Solution. If E is the standard basis of Rn, then E is orthonormal when the dot product is used. We
have ME(TA) = A (by Example 9.1.4), so the result follows immediately from part (3) of
Theorem 10.3.3.

It is important to note that whether an operator is symmetric depends on which inner product is being
used (see Exercise 10.3.2).

If V is a finite dimensional inner product space, the eigenvalues of an operator T : V → V are the
same as those of MB(T ) for any orthonormal basis B (see Theorem 9.3.3). If T is symmetric, MB(T ) is a
symmetric matrix and so has real eigenvalues by Theorem 5.5.7. Hence we have the following:

Theorem 10.3.4

A symmetric linear operator on a finite dimensional inner product space has real eigenvalues.

If U is a subspace of an inner product space V , recall that its orthogonal complement is the subspace
U⊥ of V defined by

U⊥ = {v in V | 〈v, u〉= 0 for all u in U}

Theorem 10.3.5

Let T : V →V be a symmetric linear operator on an inner product space V , and let U be a
T -invariant subspace of V . Then:

1. The restriction of T to U is a symmetric linear operator on U .

2. U⊥ is also T -invariant.

Proof.
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1. U is itself an inner product space using the same inner product, and condition 1 in Theorem 10.3.3
that T is symmetric is clearly preserved.

2. If v is in U⊥, our task is to show that T (v) is also in U⊥; that is, 〈T (v), u〉= 0 for all u in U . But if
u is in U , then T (u) also lies in U because U is T -invariant, so

〈T (v), u〉= 〈v, T (u)〉

using the symmetry of T and the definition of U⊥.

The principal axes theorem (Theorem 8.2.2) asserts that an n×n matrix A is symmetric if and only if
Rn has an orthogonal basis of eigenvectors of A. The following result not only extends this theorem to an
arbitrary n-dimensional inner product space, but the proof is much more intuitive.

Theorem 10.3.6: Principal Axes Theorem

The following conditions are equivalent for a linear operator T on a finite dimensional inner
product space V .

1. T is symmetric.

2. V has an orthogonal basis consisting of eigenvectors of T .

Proof. (1)⇒ (2). Assume that T is symmetric and proceed by induction on n = dim V . If n = 1, every

nonzero vector in V is an eigenvector of T , so there is nothing to prove. If n ≥ 2, assume inductively
that the theorem holds for spaces of dimension less than n. Let λ1 be a real eigenvalue of T (by Theo-
rem 10.3.4) and choose an eigenvector f1 corresponding to λ1. Then U = Rf1 is T -invariant, so U⊥ is
also T -invariant by Theorem 10.3.5 (T is symmetric). Because dim U⊥ = n− 1 (Theorem 10.2.6), and
because the restriction of T to U⊥ is a symmetric operator (Theorem 10.3.5), it follows by induction that
U⊥ has an orthogonal basis {f2, . . . , fn} of eigenvectors of T . Hence B = {f1, f2, . . . , fn} is an orthogonal
basis of V , which proves (2).

(2)⇒ (1). If B = {f1, . . . , fn} is a basis as in (2), then MB(T ) is symmetric (indeed diagonal), so T is
symmetric by Theorem 10.3.3.

The matrix version of the principal axes theorem is an immediate consequence of Theorem 10.3.6. If A

is an n×n symmetric matrix, then TA : Rn→Rn is a symmetric operator, so let B be an orthonormal basis
of Rn consisting of eigenvectors of TA (and hence of A). Then PT AP is diagonal where P is the orthogonal
matrix whose columns are the vectors in B (see Theorem 9.2.4).

Similarly, let T : V → V be a symmetric linear operator on the n-dimensional inner product space V

and let B0 be any convenient orthonormal basis of V . Then an orthonormal basis of eigenvectors of T can
be computed from MB0(T ). In fact, if PT MB0(T )P is diagonal where P is orthogonal, let B = {f1, . . . , fn}
be the vectors in V such that CB0(f j) is column j of P for each j. Then B consists of eigenvectors of T by
Theorem 9.3.3, and they are orthonormal because B0 is orthonormal. Indeed

〈fi, f j〉=CB0(fi) ·CB0(f j)

holds for all i and j, as the reader can verify. Here is an example.
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Example 10.3.4

Let T : P2→ P2 be given by

T (a+bx+ cx2) = (8a−2b+2c)+(−2a+5b+4c)x+(2a+4b+5c)x2

Using the inner product 〈a+bx+ cx2, a′+b′x+ c′x2〉= aa′+bb′+ cc′, show that T is symmetric
and find an orthonormal basis of P2 consisting of eigenvectors.

Solution. If B0 = {1, x, x2}, then MB0(T ) =




8 −2 2
−2 5 4

2 4 5



 is symmetric, so T is symmetric.

This matrix was analyzed in Example 8.2.5, where it was found that an orthonormal basis of
eigenvectors is

{
1
3

[
1 2 −2

]T , 1
3

[
2 1 2

]T , 1
3

[
−2 2 1

]T}. Because B0 is
orthonormal, the corresponding orthonormal basis of P2 is

B =
{1

3(1+2x−2x2), 1
3(2+ x+2x2), 1

3(−2+2x+ x2)
}

Exercises for 10.3

Exercise 10.3.1 In each case, show that T is symmetric
by calculating MB(T ) for some orthonormal basis B.

a. T : R3→ R3;
T (a, b, c) = (a−2b, −2a+2b+2c, 2b−c); dot prod-
uct

b. T : M22→M22;

T

[
a b

c d

]
=

[
c−a d−b

a+2c b+2d

]
;

inner product:〈[
x y

z w

]
,
[

x′ y′

z′ w′

]〉
= xx′+ yy′+ zz′+ww′

c. T : P2→ P2;
T (a+bx+ cx2) = (b+ c)+ (a+ c)x+(a+b)x2;
inner product:
〈a+bx+ cx2, a′+b′x+ c′x2〉= aa′+bb′+ cc′

Exercise 10.3.2 Let T : R2→ R2 be given by

T (a, b) = (2a+b, a−b).

a. Show that T is symmetric if the dot product is
used.

b. Show that T is not symmetric if 〈x, y〉 = xAyT ,

where A =

[
1 1
1 2

]
.

[Hint: Check that B = {(1, 0), (1, −1)} is an or-
thonormal basis.]

Exercise 10.3.3 Let T : R2→ R2 be given by

T (a, b) = (a−b, b−a)

Use the dot product in R2.

a. Show that T is symmetric.

b. Show that MB(T ) is not symmetric if the orthogo-
nal basis B = {(1, 0), (0, 2)} is used. Why does
this not contradict Theorem 10.3.3?

Exercise 10.3.4 Let V be an n-dimensional inner prod-
uct space, and let T and S denote symmetric linear oper-
ators on V . Show that:

a. The identity operator is symmetric.

b. rT is symmetric for all r in R.

c. S+T is symmetric.

d. If T is invertible, then T−1 is symmetric.

e. If ST = T S, then ST is symmetric.

Exercise 10.3.5 In each case, show that T is symmetric
and find an orthonormal basis of eigenvectors of T .
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a. T : R3→ R3;
T (a, b, c) = (2a+2c, 3b, 2a+5c); use the dot
product

b. T : R3→ R3;
T (a, b, c) = (7a−b, −a+7b, 2c); use the dot
product

c. T : P2→ P2;
T (a+bx+ cx2) = 3b+(3a+4c)x+4bx2;
inner product
〈a+bx+ cx2, a′+b′x+ c′x2〉= aa′+bb′+ cc′

d. T : P2→ P2;
T (a+bx+ cx2) = (c−a)+3bx+(a− c)x2; inner
product as in part (c)

Exercise 10.3.6 If A is any n×n matrix, let TA :Rn→Rn

be given by TA(x) = Ax. Suppose an inner product on Rn

is given by 〈x, y〉 = xT Py, where P is a positive definite
matrix.

a. Show that TA is symmetric if and only if
PA = AT P.

b. Use part (a) to deduce Example 10.3.3.

Exercise 10.3.7 Let T : M22→M22 be given by
T (X) = AX , where A is a fixed 2×2 matrix.

a. Compute MB(T ), where

B =

{[
1 0
0 0

]
,
[

0 0
1 0

]
,
[

0 1
0 0

]
,
[

0 0
0 1

]}
.

Note the order!

b. Show that cT (x) = [cA(x)]2.

c. If the inner product on M22 is 〈X , Y 〉= tr (XY T ),
show that T is symmetric if and only if A is a sym-
metric matrix.

Exercise 10.3.8 Let T : R2→ R2 be given by

T (a, b) = (b−a, a+2b)

Show that T is symmetric if the dot product is used in R2

but that it is not symmetric if the following inner product
is used:

〈x, y〉= xAyT , A =

[
1 −1
−1 2

]

Exercise 10.3.9 If T : V → V is symmetric, write
T−1(W ) = {v | T (v) is in W}. Show that
T (U)⊥ = T−1(U⊥) holds for every subspace U of V .

Exercise 10.3.10 Let T : M22 → M22 be defined by
T (X) = PXQ, where P and Q are nonzero 2× 2 matri-
ces. Use the inner product 〈X , Y 〉= tr (XY T ). Show that
T is symmetric if and only if either P and Q are both sym-

metric or both are scalar multiples of
[

0 1
−1 0

]
. [Hint:

If B is as in part (a) of Exercise 10.3.7, then

MB(T ) =

[
aP cP

bP dP

]
in block form, where

Q =

[
a b

c d

]
.

If B0 =

{[
1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
,
[

0 0
0 1

]}
,

then MB(T ) =

[
pQT qQT

rQT sQT

]
, where P =

[
p q

r s

]
.

Use the fact that cP = bPT ⇒ (c2−b2)P = 0.]

Exercise 10.3.11 Let T : V →W be any linear transfor-
mation and let B = {b1, . . . , bn} and D = {d1, . . . , dm}
be bases of V and W , respectively. If W is an inner prod-
uct space and D is orthogonal, show that

MDB(T ) =
[
〈di, T (b j)〉
‖di‖2

]

This is a generalization of Theorem 10.3.2.

Exercise 10.3.12 Let T : V →V be a linear operator on
an inner product space V of finite dimension. Show that
the following are equivalent.

1. 〈v, T (w)〉=−〈T (v), w〉 for all v and w in V .

2. MB(T ) is skew-symmetric for every orthonormal
basis B.

3. MB(T ) is skew-symmetric for some orthonormal
basis B.

Such operators T are called skew-symmetric opera-
tors.

Exercise 10.3.13 Let T : V →V be a linear operator on
an n-dimensional inner product space V .

a. Show that T is symmetric if and only if it satisfies
the following two conditions.

i. cT (x) factors completely over R.

ii. If U is a T -invariant subspace of V , then U⊥

is also T -invariant.
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b. Using the standard inner product on R2, show that
T : R2 → R2 with T (a, b) = (a, a+ b) satisfies
condition (i) and that S : R2→ R2 with
S(a, b) = (b, −a) satisfies condition (ii), but that
neither is symmetric. (Example 9.3.4 is useful for
S.)

[Hint for part (a): If conditions (i) and (ii) hold,
proceed by induction on n. By condition (i), let
e1 be an eigenvector of T . If U = Re1, then U⊥

is T -invariant by condition (ii), so show that the
restriction of T to U⊥ satisfies conditions (i) and
(ii). (Theorem 9.3.1 is helpful for part (i)). Then
apply induction to show that V has an orthogonal
basis of eigenvectors (as in Theorem 10.3.6)].

Exercise 10.3.14 Let B = {f1, f2, . . . , fn} be an or-
thonormal basis of an inner product space V . Given
T : V →V , define T ′ : V →V by

T ′(v) = 〈v, T (f1)〉f1 + 〈v, T (f2)〉f2 + · · ·+ 〈v, T (fn)〉fn

=
n

∑
i=1
〈v, T (fi)〉fi

a. Show that (aT )′ = aT ′.

b. Show that (S+T )′ = S′+T ′.

c. Show that MB(T ′) is the transpose of MB(T ).

d. Show that (T ′)′ = T , using part (c). [Hint:
MB(S) = MB(T ) implies that S = T .]

e. Show that (ST )′ = T ′S′, using part (c).

f. Show that T is symmetric if and only if
T = T ′. [Hint: Use the expansion theorem and
Theorem 10.3.3.]

g. Show that T + T ′ and T T ′ are symmetric, using
parts (b) through (e).

h. Show that T ′(v) is independent of the choice of
orthonormal basis B. [Hint: If D = {g1, . . . , gn}
is also orthonormal, use the fact that

fi =
n

∑
j=1
〈fi, g j〉g j for each i.]

Exercise 10.3.15 Let V be a finite dimensional inner
product space. Show that the following conditions are
equivalent for a linear operator T : V →V .

1. T is symmetric and T 2 = T .

2. MB(T ) =

[
Ir 0
0 0

]
for some orthonormal basis B

of V .

An operator is called a projection if it satisfies
these conditions. [Hint: If T 2 = T and T (v) = λv,
apply T to get λv = λ 2v. Hence show that 0, 1 are
the only eigenvalues of T .]

Exercise 10.3.16 Let V denote a finite dimensional in-
ner product space. Given a subspace U , define
projU : V →V as in Theorem 10.2.7.

a. Show that projU is a projection in the sense of
Exercise 10.3.15.

b. If T is any projection, show that T = projU ,
where U = im T . [Hint: Use T 2 = T to show
that V = im T ⊕ ker T and T (u) = u for all u in
im T . Use the fact that T is symmetric to show that
ker T ⊆ ( im T )⊥ and hence that these are equal
because they have the same dimension.]

10.4 Isometries

We saw in Section 2.6 that rotations about the origin and reflections in a line through the origin are linear
operators on R2. Similar geometric arguments (in Section 4.4) establish that, in R3, rotations about a line
through the origin and reflections in a plane through the origin are linear. We are going to give an algebraic
proof of these results that is valid in any inner product space. The key observation is that reflections and
rotations are distance preserving in the following sense. If V is an inner product space, a transformation
S : V →V (not necessarily linear) is said to be distance preserving if the distance between S(v) and S(w)
is the same as the distance between v and w for all vectors v and w; more formally, if

‖S(v)−S(w)‖= ‖v−w‖ for all v and w in V (10.2)
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Distance-preserving maps need not be linear. For example, if u is any vector in V , the transformation
Su : V →V defined by Su(v) = v+u for all v in V is called translation by u, and it is routine to verify that
Su is distance preserving for any u. However, Su is linear only if u= 0 (since then Su(0) = 0). Remarkably,
distance-preserving operators that do fix the origin are necessarily linear.

Lemma 10.4.1

Let V be an inner product space of dimension n, and consider a distance-preserving transformation
S : V →V . If S(0) = 0, then S is linear.

Proof. We have ‖S(v)−S(w)‖2 = ‖v−w‖2 for all v and w in V by (10.2), which gives

〈S(v), S(w)〉= 〈v, w〉 for all v and w in V (10.3)

Now let {f1, f2, . . . , fn} be an orthonormal basis of V . Then {S(f1), S(f2), . . . , S(fn)} is orthonormal by
(10.3) and so is a basis because dim V = n. Now compute:

〈S(v+w)−S(v)−S(w), S(fi)〉= 〈S(v+w), S(fi)〉−〈S(v), S(fi)〉−〈S(w), S(fi)〉
= 〈v+w, fi〉−〈v, fi〉−〈w, fi〉
= 0

for each i. It follows from the expansion theorem (Theorem 10.2.4) that S(v+w)−S(v)−S(w) = 0; that
is, S(v+w) = S(v)+S(w). A similar argument shows that S(av) = aS(v) holds for all a in R and v in V ,
so S is linear after all.

Definition 10.5 Isometries

Distance-preserving linear operators are called isometries.

It is routine to verify that the composite of two distance-preserving transformations is again distance
preserving. In particular the composite of a translation and an isometry is distance preserving. Surpris-
ingly, the converse is true.

Theorem 10.4.1

If V is a finite dimensional inner product space, then every distance-preserving transformation
S : V →V is the composite of a translation and an isometry.

Proof. If S : V → V is distance preserving, write S(0) = u and define T : V → V by T (v) = S(v)−u for
all v in V . Then ‖T (v)−T (w)‖= ‖v−w‖ for all vectors v and w in V as the reader can verify; that is, T

is distance preserving. Clearly, T (0) = 0, so it is an isometry by Lemma 10.4.1. Since

S(v) = u+T (v) = (Su ◦T )(v) for all v in V

we have S = Su ◦T , and the theorem is proved.

In Theorem 10.4.1, S= Su◦T factors as the composite of an isometry T followed by a translation Su. More
is true: this factorization is unique in that u and T are uniquely determined by S; and w ∈ V exists such
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that S = T ◦ Sw is uniquely the composite of translation by w followed by the same isometry T (Exercise
10.4.12).

Theorem 10.4.1 focuses our attention on the isometries, and the next theorem shows that, while they
preserve distance, they are characterized as those operators that preserve other properties.

Theorem 10.4.2

Let T : V →V be a linear operator on a finite dimensional inner product space V .
The following conditions are equivalent:

1. T is an isometry. (T preserves distance)

2. ‖T (v)‖= ‖v‖ for all v in V . (T preserves norms)

3. 〈T (v), T (w)〉= 〈v, w〉 for all v and w in V . (T preserves inner products)

4. If {f1, f2, . . . , fn} is an orthonormal basis of V ,

then {T (f1), T (f2), . . . , T (fn)} is also an orthonormal basis. (T preserves orthonormal bases)

5. T carries some orthonormal basis to an orthonormal basis.

Proof. (1)⇒ (2). Take w = 0 in (10.2).
(2)⇒ (3). Since T is linear, (2) gives ‖T (v)−T (w)‖2 = ‖T (v−w)‖2 = ‖v−w‖2. Now (3) follows.
(3) ⇒ (4). By (3), {T (f1), T (f2), . . . , T (fn)} is orthogonal and ‖T (fi)‖2 = ‖fi‖2 = 1. Hence it is a

basis because dim V = n.
(4)⇒ (5). This needs no proof.
(5)⇒ (1). By (5), let {f1, . . . , fn} be an orthonormal basis of V such that{T (f1), . . . , T (fn)} is also

orthonormal. Given v = v1f1 + · · ·+ vnfn in V , we have T (v) = v1T (f1)+ · · ·+ vnT (fn) so Pythagoras’
theorem gives

‖T (v)‖2 = v2
1 + · · ·+ v2

n = ‖v‖2

Hence ‖T (v)‖= ‖v‖ for all v, and (1) follows by replacing v by v−w.

Before giving examples, we note some consequences of Theorem 10.4.2.

Corollary 10.4.1

Let V be a finite dimensional inner product space.

1. Every isometry of V is an isomorphism.5

2. a. 1V : V →V is an isometry.

b. The composite of two isometries of V is an isometry.

c. The inverse of an isometry of V is an isometry.

Proof. (1) is by (4) of Theorem 10.4.2 and Theorem 7.3.1. (2a) is clear, and (2b) is left to the reader. If
T : V → V is an isometry and {f1, . . . , fn} is an orthonormal basis of V , then (2c) follows because T−1

carries the orthonormal basis {T (f1), . . . , T (fn)} back to {f1, . . . , fn}.

5V must be finite dimensional—see Exercise 10.4.13.
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The conditions in part (2) of the corollary assert that the set of isometries of a finite dimensional inner
product space forms an algebraic system called a group. The theory of groups is well developed, and
groups of operators are important in geometry. In fact, geometry itself can be fruitfully viewed as the
study of those properties of a vector space that are preserved by a group of invertible linear operators.

Example 10.4.1

Rotations of R2 about the origin are isometries, as are reflections in lines through the origin: They
clearly preserve distance and so are linear by Lemma 10.4.1. Similarly, rotations about lines
through the origin and reflections in planes through the origin are isometries of R3.

Example 10.4.2

Let T : Mnn→Mnn be the transposition operator: T (A) = AT . Then T is an isometry if the inner
product is 〈A, B〉= tr (ABT ) = ∑

i, j

ai jbi j. In fact, T permutes the basis consisting of all matrices

with one entry 1 and the other entries 0.

The proof of the next result requires the fact (see Theorem 10.4.2) that, if B is an orthonormal basis,
then 〈v, w〉=CB(v) ·CB(w) for all vectors v and w.

Theorem 10.4.3

Let T : V →V be an operator where V is a finite dimensional inner product space. The following
conditions are equivalent.

1. T is an isometry.

2. MB(T ) is an orthogonal matrix for every orthonormal basis B.

3. MB(T ) is an orthogonal matrix for some orthonormal basis B.

Proof. (1) ⇒ (2). Let B = {e1, . . . , en} be an orthonormal basis. Then the jth column of MB(T ) is
CB[T (e j)], and we have

CB[T (e j)] ·CB[T (ek)] = 〈T (e j), T (ek)〉= 〈e j, ek〉

using (1). Hence the columns of MB(T ) are orthonormal in Rn, which proves (2).
(2)⇒ (3). This is clear.
(3)⇒ (1). Let B = {e1, . . . , en} be as in (3). Then, as before,

〈T (e j), T (ek)〉=CB[T (e j)] ·CB[T (ek)]

so {T (e1), . . . , T (en)} is orthonormal by (3). Hence Theorem 10.4.2 gives (1).

It is important that B is orthonormal in Theorem 10.4.3. For example, T : V → V given by T (v) = 2v

preserves orthogonal sets but is not an isometry, as is easily checked.
If P is an orthogonal square matrix, then P−1 = PT . Taking determinants yields (det P)2 = 1, so

det P =±1. Hence:
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Corollary 10.4.2

If T : V →V is an isometry where V is a finite dimensional inner product space, then det T =±1.

Example 10.4.3

If A is any n×n matrix, the matrix operator TA : Rn→ Rn is an isometry if and only if A is
orthogonal using the dot product in Rn. Indeed, if E is the standard basis of Rn, then ME(TA) = A

by Theorem 9.2.4.

Rotations and reflections that fix the origin are isometries in R2 and R3 (Example 10.4.1); we are going
to show that these isometries (and compositions of them in R3) are the only possibilities. In fact, this will
follow from a general structure theorem for isometries. Surprisingly enough, much of the work involves
the two–dimensional case.

Theorem 10.4.4

Let T : V →V be an isometry on the two-dimensional inner product space V . Then there are two
possibilities.
Either (1) There is an orthonormal basis B of V such that

MB(T ) =

[
cosθ −sinθ
sinθ cosθ

]
, 0≤ θ < 2π

or (2) There is an orthonormal basis B of V such that

MB(T ) =

[
1 0
0 −1

]

Furthermore, type (1) occurs if and only if det T = 1, and type (2) occurs if and only if
det T =−1.

Proof. The final statement follows from the rest because det T = det [MB(T )] for any basis B. Let
B0 = {e1, e2} be any ordered orthonormal basis of V and write

A = MB0(T ) =

[
a b

c d

]
; that is,

T (e1) = ae1 + ce2
T (e2) = be1 +de2

Then A is orthogonal by Theorem 10.4.3, so its columns (and rows) are orthonormal. Hence

a2 + c2 = 1 = b2 +d2

so (a, c) and (d, b) lie on the unit circle. Thus angles θ and ϕ exist such that

a = cosθ , c = sinθ 0≤ θ < 2π
d = cosϕ , b = sinϕ 0≤ ϕ < 2π
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Then sin(θ +ϕ) = cd+ab = 0 because the columns of A are orthogonal, so θ +ϕ = kπ for some integer
k. This gives d = cos(kπ−θ) = (−1)k cosθ and b = sin(kπ−θ) = (−1)k+1 sinθ . Finally

A =

[
cosθ (−1)k+1 sinθ
sinθ (−1)k cosθ

]

If k is even we are in type (1) with B = B0, so assume k is odd. Then A =

[
a c

c −a

]
. If a =−1 and c = 0,

we are in type (1) with B= {e2, e2}. Otherwise A has eigenvalues λ1 = 1 and λ2 =−1 with corresponding

eigenvectors x1 =

[
1+a

c

]
and x2 =

[
−c

1+a

]
as the reader can verify. Write

f1 = (1+a)e1 + ce2 and f2 =−ce2 +(1+a)e2

Then f1 and f2 are orthogonal (verify) and CB0(fi) =CB0(λifi) = xi for each i. Moreover

CB0[T (fi)] = ACB0(fi) = Axi = λixi = λiCB0(fi) =CB0(λifi)

so T (fi) = λifi for each i. Hence MB(T ) =

[
λ1 0
0 λ2

]
=

[
1 0
0 −1

]
and we are in type (2) with

B =
{

1
‖f1‖ f1, 1

‖f2‖f2

}
.

Corollary 10.4.3

An operator T : R2→ R2 is an isometry if and only if T is a rotation or a reflection.

In fact, if E is the standard basis of R2, then the clockwise rotation Rθ about the origin through an angle
θ has matrix

ME(Rθ ) =

[
cosθ −sinθ
sinθ cosθ

]

(see Theorem 2.6.4). On the other hand, if S : R2→R2 is the reflection in a line through the origin (called
the fixed line of the reflection), let f1 be a unit vector pointing along the fixed line and let f2 be a unit vector
perpendicular to the fixed line. Then B = {f1, f2} is an orthonormal basis, S(f1) = f1 and S(f2) =−f2, so

MB(S) =

[
1 0
0 −1

]

Thus S is of type 2. Note that, in this case, 1 is an eigenvalue of S, and any eigenvector corresponding to
1 is a direction vector for the fixed line.

Example 10.4.4

In each case, determine whether TA : R2→ R2 is a rotation or a reflection, and then find the angle
or fixed line:

(a) A = 1
2

[
1
√

3
−
√

3 1

]
(b) A = 1

5

[
−3 4

4 3

]
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Solution. Both matrices are orthogonal, so (because ME(TA) = A, where E is the standard basis)
TA is an isometry in both cases. In the first case, det A = 1, so TA is a counterclockwise rotation
through θ , where cosθ = 1

2 and sinθ =−
√

3
2 . Thus θ =−π

3 . In (b), det A =−1, so TA is a

reflection in this case. We verify that d =

[
1
2

]
is an eigenvector corresponding to the eigenvalue

1. Hence the fixed line Rd has equation y = 2x.

We now give a structure theorem for isometries. The proof requires three preliminary results, each of
interest in its own right.

Lemma 10.4.2

Let T : V →V be an isometry of a finite dimensional inner product space V . If U is a T -invariant
subspace of V , then U⊥ is also T -invariant.

Proof. Let w lie in U⊥. We are to prove that T (w) is also in U⊥; that is, 〈T (w), u〉 = 0 for all u in U . At
this point, observe that the restriction of T to U is an isometry U →U and so is an isomorphism by the
corollary to Theorem 10.4.2. In particular, each u in U can be written in the form u = T (u1) for some u1
in U , so

〈T (w), u〉= 〈T (w), T (u1)〉= 〈w, u1〉= 0

because w is in U⊥. This is what we wanted.

To employ Lemma 10.4.2 above to analyze an isometry T : V →V when dim V = n, it is necessary to
show that a T -invariant subspace U exists such that U #= 0 and U #= V . We will show, in fact, that such a
subspace U can always be found of dimension 1 or 2. If T has a real eigenvalue λ then Ru is T -invariant
where u is any λ -eigenvector. But, in case (1) of Theorem 10.4.4, the eigenvalues of T are eiθ and e−iθ

(the reader should check this), and these are nonreal if θ #= 0 and θ #= π . It turns out that every complex
eigenvalue λ of T has absolute value 1 (Lemma 10.4.3 below); and that U has a T -invariant subspace of
dimension 2 if λ is not real (Lemma 10.4.4).

Lemma 10.4.3

Let T : V →V be an isometry of the finite dimensional inner product space V . If λ is a complex
eigenvalue of T , then |λ |= 1.

Proof. Choose an orthonormal basis B of V , and let A = MB(T ). Then A is a real orthogonal matrix so,
using the standard inner product 〈x, y〉= xT y in C, we get

‖Ax‖2 = (Ax)T (Ax) = xT AT Ax = xT Ix = ‖x‖2

for all x in Cn. But Ax = λx for some x #= 0, whence ‖x‖2 = ‖λx‖2 = |λ |2‖x‖2. This gives |λ | = 1, as
required.
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Lemma 10.4.4

Let T : V →V be an isometry of the n-dimensional inner product space V . If T has a nonreal
eigenvalue, then V has a two-dimensional T -invariant subspace.

Proof. Let B be an orthonormal basis of V , let A = MB(T ), and (using Lemma 10.4.3) let λ = eiα be a
nonreal eigenvalue of A, say Ax = λx where x #= 0 in Cn. Because A is real, complex conjugation gives
Ax = λx, so λ is also an eigenvalue. Moreover λ #= λ (λ is nonreal), so {x, x} is linearly independent in
Cn (the argument in the proof of Theorem 5.5.4 works). Now define

z1 = x+x and z2 = i(x−x)

Then z1 and z2 lie in Rn, and {z1, z2} is linearly independent overR because {x, x} is linearly independent
over C. Moreover

x = 1
2(z1− iz2) and x = 1

2(z1 + iz2)

Now λ +λ = 2cosα and λ −λ = 2isinα , and a routine computation gives

Az1 = z1 cosα + z2 sinα

Az2 =−z1 sinα + z2 cosα

Finally, let e1 and e2 in V be such that z1 =CB(e1) and z2 =CB(e2). Then

CB[T (e1)] = ACB(e1) = Az1 =CB(e1 cosα + e2 sinα)

using Theorem 9.1.2. Because CB is one-to-one, this gives the first of the following equations (the other is
similar):

T (e1) = e1 cosα + e2 sinα

T (e2) =−e1 sinα + e2 cosα

Thus U = span{e1, e2} is T -invariant and two-dimensional.

We can now prove the structure theorem for isometries.

Theorem 10.4.5

Let T : V →V be an isometry of the n-dimensional inner product space V . Given an angle θ , write

R(θ) =

[
cosθ −sinθ
sinθ cosθ

]
. Then there exists an orthonormal basis B of V such that MB(T ) has

one of the following block diagonal forms, classified for convenience by whether n is odd or even:

n = 2k+1





1 0 · · · 0
0 R(θ1) · · · 0
...

... . . . ...
0 0 · · · R(θk)




or





−1 0 · · · 0
0 R(θ1) · · · 0
...

... . . . ...
0 0 · · · R(θk)




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n = 2k





R(θ1) 0 · · · 0
0 R(θ2) · · · 0
...

... . . . ...
0 0 · · · R(θk)




or





−1 0 0 · · · 0
0 1 0 · · · 0
0 0 R(θ1) · · · 0
...

...
... . . . ...

0 0 0 · · · R(θk−1)





Proof. We show first, by induction on n, that an orthonormal basis B of V can be found such that MB(T )
is a block diagonal matrix of the following form:

MB(T ) =





Ir 0 0 · · · 0
0 −Is 0 · · · 0
0 0 R(θ1) · · · 0
...

...
...

. . .
...

0 0 0 · · · R(θt)





where the identity matrix Ir, the matrix −Is, or the matrices R(θi) may be missing. If n = 1 and V = Rv,
this holds because T (v)= λv and λ =±1 by Lemma 10.4.3. If n= 2, this follows from Theorem 10.4.4. If
n≥ 3, either T has a real eigenvalue and therefore has a one-dimensional T -invariant subspace U =Ru for
any eigenvector u, or T has no real eigenvalue and therefore has a two-dimensional T -invariant subspace
U by Lemma 10.4.4. In either case U⊥ is T -invariant (Lemma 10.4.2) and dim U⊥ = n− dim U < n.
Hence, by induction, let B1 and B2 be orthonormal bases of U and U⊥ such that MB1(T ) and MB2(T ) have
the form given. Then B = B1∪B2 is an orthonormal basis of V , and MB(T ) has the desired form with a
suitable ordering of the vectors in B.

Now observe that R(0) =
[

1 0
0 1

]
and R(π) =

[
−1 0

0 −1

]
. It follows that an even number of 1s or−1s

can be written as R(θ1)-blocks. Hence, with a suitable reordering of the basis B, the theorem follows.

As in the dimension 2 situation, these possibilities can be given a geometric interpretation when V =R3

is taken as euclidean space. As before, this entails looking carefully at reflections and rotations in R3. If
Q : R3→ R3 is any reflection in a plane through the origin (called the fixed plane of the reflection), take
{f2, f3} to be any orthonormal basis of the fixed plane and take f1 to be a unit vector perpendicular to
the fixed plane. Then Q(f1) = −f1, whereas Q(f2) = f2 and Q(f3) = f3. Hence B = {f1, f2, f3} is an
orthonormal basis such that

MB(Q) =




−1 0 0

0 1 0
0 0 1





Similarly, suppose that R : R3→ R3 is any rotation about a line through the origin (called the axis of the
rotation), and let f1 be a unit vector pointing along the axis, so R(f1) = f1. Now the plane through the
origin perpendicular to the axis is an R-invariant subspace of R2 of dimension 2, and the restriction of R

to this plane is a rotation. Hence, by Theorem 10.4.4, there is an orthonormal basis B1 = {f2, f3} of this

plane such that MB1(R) =

[
cosθ −sinθ
sinθ cosθ

]
. But then B = {f1, f2, f3} is an orthonormal basis of R3 such

that the matrix of R is

MB(R) =




1 0 0
0 cosθ −sinθ
0 sinθ cosθ




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However, Theorem 10.4.5 shows that there are isometries T in R3 of a third type: those with a matrix of
the form

MB(T ) =




−1 0 0
0 cosθ −sinθ
0 sinθ cosθ





If B = {f1, f2, f3}, let Q be the reflection in the plane spanned by f2 and f3, and let R be the ro-
tation corresponding to θ about the line spanned by f1. Then MB(Q) and MB(R) are as above, and
MB(Q)MB(R) = MB(T ) as the reader can verify. This means that MB(QR) = MB(T ) by Theorem 9.2.1,
and this in turn implies that QR = T because MB is one-to-one (see Exercise 9.1.26). A similar argument
shows that RQ = T , and we have Theorem 10.4.6.

Theorem 10.4.6

If T : R3→ R3 is an isometry, there are three possibilities.

a. T is a rotation, and MB(T ) =




1 0 0
0 cosθ −sinθ
0 sinθ cosθ



 for some orthonormal basis B.

b. T is a reflection, and MB(T ) =




−1 0 0

0 1 0
0 0 1



 for some orthonormal basis B.

c. T = QR = RQ where Q is a reflection, R is a rotation about an axis perpendicular to the fixed

plane of Q and MB(T ) =




−1 0 0
0 cosθ −sinθ
0 sinθ cosθ



 for some orthonormal basis B.

Hence T is a rotation if and only if det T = 1.

Proof. It remains only to verify the final observation that T is a rotation if and only if det T = 1. But
clearly det T =−1 in parts (b) and (c).

A useful way of analyzing a given isometry T : R3→R3 comes from computing the eigenvalues of T .
Because the characteristic polynomial of T has degree 3, it must have a real root. Hence, there must be at
least one real eigenvalue, and the only possible real eigenvalues are ±1 by Lemma 10.4.3. Thus Table 10.1
includes all possibilities.



10.4. Isometries 565

Table 10.1

Eigenvalues of T Action of T

(1) 1, no other real eigenvalues Rotation about the line Rf where f is an eigenvector corresponding
to 1. [Case (a) of Theorem 10.4.6.]

(2) −1, no other real eigenvalues Rotation about the line Rf followed by reflection in the plane (Rf)⊥

where f is an eigenvector corresponding to −1. [Case (c) of Theo-
rem 10.4.6.]

(3) −1, 1, 1 Reflection in the plane (Rf)⊥ where f is an eigenvector correspond-
ing to −1. [Case (b) of Theorem 10.4.6.]

(4) 1, −1, −1 This is as in (1) with a rotation of π .

(5) −1, −1, −1 Here T (x) =−x for all x. This is (2) with a rotation of π .

(6) 1, 1, 1 Here T is the identity isometry.

Example 10.4.5

Analyze the isometry T : R3→R3 given by T




x

y

z



=




y

z

−x



.

Solution. If B0 is the standard basis of R3, then MB0(T ) =




0 1 0
0 0 1
−1 0 0



, so

cT (x) = x3 +1 = (x+1)(x2− x+1). This is (2) in Table 10.1. Write:

f1 =
1√
3




1
−1

1



 f2 =
1√
6




1
2
1



 f3 =
1√
2




1
0
−1





Here f1 is a unit eigenvector corresponding to λ1 =−1, so T is a rotation (through an angle θ )
about the line L = Rf1, followed by reflection in the plane U through the origin perpendicular to f1
(with equation x− y+ z = 0). Then, {f1, f2} is chosen as an orthonormal basis of U , so
B = {f1, f2, f3} is an orthonormal basis of R3 and

MB(T ) =





−1 0 0

0 1
2 −

√
3

2

0
√

3
2

1
2





Hence θ is given by cosθ = 1
2 , sinθ =

√
3

2 , so θ = π
3 .
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Let V be an n-dimensional inner product space. A subspace of V of dimension n− 1 is called a
hyperplane in V . Thus the hyperplanes in R3 and R2 are, respectively, the planes and lines through the
origin. Let Q : V →V be an isometry with matrix

MB(Q) =

[
−1 0

0 In−1

]

for some orthonormal basis B = {f1, f2, . . . , fn}. Then Q(f1) = −f1 whereas Q(u) = u for each u in
U = span{f2, . . . , fn}. Hence U is called the fixed hyperplane of Q, and Q is called reflection in U .
Note that each hyperplane in V is the fixed hyperplane of a (unique) reflection of V . Clearly, reflections in
R2 and R3 are reflections in this more general sense.

Continuing the analogy with R2 and R3, an isometry T : V → V is called a rotation if there exists an
orthonormal basis {f1, . . . , fn} such that

MB(T ) =




Ir 0 0
0 R(θ) 0
0 0 Is





in block form, where R(θ) =

[
cosθ −sinθ
sinθ cosθ

]
, and where either Ir or Is (or both) may be missing. If

R(θ) occupies columns i and i+ 1 of MB(T ), and if W = span{fi, fi+1}, then W is T -invariant and the
matrix of T : W →W with respect to {fi, fi+1} is R(θ). Clearly, if W is viewed as a copy of R2, then
T is a rotation in W . Moreover, T (u) = u holds for all vectors u in the (n− 2)-dimensional subspace
U = span{f1, . . . , fi−1, fi+1, . . . , fn}, and U is called the fixed axis of the rotation T . In R3, the axis of
any rotation is a line (one-dimensional), whereas in R2 the axis is U = {0}.

With these definitions, the following theorem is an immediate consequence of Theorem 10.4.5 (the
details are left to the reader).

Theorem 10.4.7

Let T : V →V be an isometry of a finite dimensional inner product space V . Then there exist
isometries T1, . . . , T such that

T = TkTk−1 · · ·T2T1

where each Ti is either a rotation or a reflection, at most one is a reflection, and TiTj = TjTi holds
for all i and j. Furthermore, T is a composite of rotations if and only if det T = 1.

Exercises for 10.4

Throughout these exercises, V denotes a finite di-
mensional inner product space.

Exercise 10.4.1 Show that the following linear opera-
tors are isometries.

a. T : C→ C; T (z) = z; 〈z, w〉= re (zw)

b. T : Rn→ Rn; T (a1, a2, . . . , an)
= (an, an−1, . . . , a2, a1); dot product

c. T : M22 → M22; T

[
a b

c d

]
=

[
c d

b a

]
;

〈A, B〉= tr (ABT )

d. T : R3 → R3; T (a, b, c) = 1
9 (2a+ 2b− c, 2a+
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2c−b, 2b+2c−a); dot product

Exercise 10.4.2 In each case, show that T is an isometry
of R2, determine whether it is a rotation or a reflection,
and find the angle or the fixed line. Use the dot product.

T

[
a

b

]
=

[
−a

b

]
a. T

[
a

b

]
=

[
−a

−b

]
b.

T

[
a

b

]
=

[
b

−a

]
c. T

[
a

b

]
=

[
−b

−a

]
d.

T

[
a

b

]
= 1√

2

[
a+b

b−a

]
e.

T

[
a

b

]
= 1√

2

[
a−b

a+b

]
f.

Exercise 10.4.3 In each case, show that T is an isometry
of R3, determine the type (Theorem 10.4.6), and find the
axis of any rotations and the fixed plane of any reflections
involved.

T




a

b

c



=




a

−b

c



a.

T




a

b

c



= 1
2





√
3c−a√
3a+ c

2b



b.

T




a

b

c



=




b

c

a



c. T




a

b

c



=




a

−b

−c



d.

T




a

b

c



= 1
2




a+
√

3b

b−
√

3a

2c



e.

T




a

b

c



= 1√
2




a+ c

−
√

2b

c−a



f.

Exercise 10.4.4 Let T :R2→R2 be an isometry. A vec-
tor x in R2 is said to be fixed by T if T (x) = x. Let E1

denote the set of all vectors in R2 fixed by T . Show that:

a. E1 is a subspace of R2.

b. E1 = R2 if and only if T = 1 is the identity map.

c. dim E1 = 1 if and only if T is a reflection (about
the line E1).

d. E1 = {0} if and only if T is a rotation (T #= 1).

Exercise 10.4.5 Let T :R3→R3 be an isometry, and let
E1 be the subspace of all fixed vectors in R3 (see Exercise
10.4.4). Show that:

a. E1 = R3 if and only if T = 1.

b. dim E1 = 2 if and only if T is a reflection (about
the plane E1).

c. dim E1 = 1 if and only if T is a rotation (T #= 1)
(about the line E1).

d. dim E1 = 0 if and only if T is a reflection followed
by a (nonidentity) rotation.

Exercise 10.4.6 If T is an isometry, show that aT is an
isometry if and only if a =±1.

Exercise 10.4.7 Show that every isometry preserves the
angle between any pair of nonzero vectors (see Exercise
10.1.31). Must an angle-preserving isomorphism be an
isometry? Support your answer.

Exercise 10.4.8 If T : V → V is an isometry, show that
T 2 = 1V if and only if the only complex eigenvalues of T

are 1 and −1.

Exercise 10.4.9 Let T : V → V be a linear operator.
Show that any two of the following conditions implies
the third:

1. T is symmetric.

2. T is an involution (T 2 = 1V ).

3. T is an isometry.

[Hint: In all cases, use the definition

〈v, T (w)〉= 〈T (v), w〉

of a symmetric operator. For (1) and (3) ⇒ (2),
use the fact that, if 〈T 2(v)− v, w〉 = 0 for all w,
then T 2(v) = v.]

Exercise 10.4.10 If B and D are any orthonormal bases
of V , show that there is an isometry T :V →V that carries
B to D.

Exercise 10.4.11 Show that the following are equivalent
for a linear transformation S : V →V where V is finite di-
mensional and S #= 0:

1. 〈S(v), S(w)〉= 0 whenever 〈v, w〉= 0;
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2. S = aT for some isometry T : V → V and some
a #= 0 in R.

3. S is an isomorphism and preserves angles between
nonzero vectors.

[Hint: Given (1), show that ‖S(e)‖ = ‖S(f)‖ for
all unit vectors e and f in V .]

Exercise 10.4.12 Let S : V →V be a distance preserving
transformation where V is finite dimensional.

a. Show that the factorization in the proof of Theo-
rem 10.4.1 is unique. That is, if S = Su ◦ T and
S = Su′ ◦T ′ where u, u′ ∈V and T , T ′ : V →V are
isometries, show that u = u′ and T = T ′.

b. If S = Su ◦ T , u ∈ V , T an isometry, show that
w ∈V exists such that S = T ◦Sw.

Exercise 10.4.13 Define T : P→ P by T ( f ) = x f (x) for
all f ∈ P, and define an inner product on P as follows: If
f = a0 + a1x+ a2x2 + · · · and g = b0 + b1x+ b2x2 + · · ·
are in P, define 〈 f , g〉= a0b0 +a1b1 +a2b2 + · · · .

a. Show that 〈 , 〉 is an inner product on P.

b. Show that T is an isometry of P.

c. Show that T is one-to-one but not onto.

10.5 An Application to Fourier Approximation
6

If U is an orthogonal basis of a vector space V , the expansion theorem (Theorem 10.2.4) presents a vector
v ∈ V as a linear combination of the vectors in U . Of course this requires that the set U is finite since
otherwise the linear combination is an infinite sum and makes no sense in V .

However, given an infinite orthogonal set U = {f1, f2, . . . , fn, . . .}, we can use the expansion theorem
for {f1, f2, . . . , fn} for each n to get a series of “approximations” vn for a given vector v. A natural
question is whether these vn are getting closer and closer to v as n increases. This turns out to be a very
fruitful idea.

In this section we shall investigate an important orthogonal set in the space C[−π , π ] of continuous
functions on the interval [−π , π ], using the inner product.

〈 f , g〉=
∫ π

−π
f (x)g(x)dx

Of course, calculus will be needed. The orthogonal set in question is

{1, sinx, cosx, sin(2x), cos(2x), sin(3x), cos(3x), . . .}

Standard techniques of integration give

‖1‖2 =
∫ π

−π
12dx = 2π

‖sin kx‖2 =
∫ π

−π
sin2(kx)dx = π for any k = 1, 2, 3, . . .

‖cos kx‖2 =
∫ π

−π
cos2(kx)dx = π for any k = 1, 2, 3, . . .

We leave the verifications to the reader, together with the task of showing that these functions are orthog-
onal:

〈sin(kx), sin(mx)〉= 0 = 〈cos(kx), cos(mx)〉 if k #= m

6The name honours the French mathematician J.B.J. Fourier (1768-1830) who used these techniques in 1822 to investigate
heat conduction in solids.
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and
〈sin(kx), cos(mx)〉= 0 for all k ≥ 0 and m≥ 0

(Note that 1 = cos(0x), so the constant function 1 is included.)
Now define the following subspace of C[−π , π ]:

Fn = span{1, sinx, cosx, sin(2x), cos(2x), . . . , sin(nx), cos(nx)}

The aim is to use the approximation theorem (Theorem 10.2.8); so, given a function f in C[−π , π ], define
the Fourier coefficients of f by

a0 =
〈 f (x), 1〉
‖1‖2 = 1

2π

∫ π

−π
f (x)dx

ak =
〈 f (x), cos(kx)〉
‖cos(kx)‖2 = 1

π

∫ π

−π
f (x)cos(kx)dx k = 1, 2, . . .

bk =
〈 f (x), sin(kx)〉
‖sin(kx)‖2 = 1

π

∫ π

−π
f (x)sin(kx)dx k = 1, 2, . . .

Then the approximation theorem (Theorem 10.2.8) gives Theorem 10.5.1.

Theorem 10.5.1

Let f be any continuous real-valued function defined on the interval [−π , π ]. If a0, a1, . . . , and b0,
b1, . . . are the Fourier coefficients of f , then given n≥ 0,

fn(x) = a0 +a1 cosx+b1 sinx+a2 cos(2x)+b2 sin(2x)+ · · ·+an cos(nx)+bn sin(nx)

is a function in Fn that is closest to f in the sense that

‖ f − fn‖ ≤ ‖ f −g‖

holds for all functions g in Fn.

The function fn is called the nth Fourier approximation to the function f .
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Example 10.5.1

Find the fifth Fourier approximation to the function f (x) defined on [−π , π ] as follows:

f (x) =

{
π + x if −π ≤ x < 0
π− x if 0≤ x≤ π

−π 0 π

π

x

y

-4 -3 -2 -1 0 1 2 3 4

1

2

3

4

f5(x)

x

y

-4 -3 -2 -1 0 1 2 3 4

1

2

3

4

f13(x)

x

y

Solution. The graph of y = f (x) appears in the top diagram.
The Fourier coefficients are computed as follows. The details
of the integrations (usually by parts) are omitted.

a0 =
1

2π

∫ π

−π
f (x)dx = π

2

ak =
1
π

∫ π

−π
f (x)cos(kx)dx = 2

πk2 [1− cos(kπ)] =

{
0 if k is even

4
πk2 if k is odd

bk =
1
π

∫ π

−π
f (x)sin(kx)dx = 0 for all k = 1, 2, . . .

Hence the fifth Fourier approximation is

f5(x) =
π
2 +

4
π

{
cosx+ 1

32 cos(3x)+ 1
52 cos(5x)

}

This is plotted in the middle diagram and is already a reasonable
approximation to f (x). By comparison, f13(x) is also plotted
in the bottom diagram.

We say that a function f is an even function if f (x)= f (−x) holds for all x; f is called an odd function

if f (−x) =− f (x) holds for all x. Examples of even functions are constant functions, the even powers x2,
x4, . . . , and cos(kx); these functions are characterized by the fact that the graph of y = f (x) is symmetric
about the y axis. Examples of odd functions are the odd powers x, x3, . . . , and sin(kx) where k > 0, and
the graph of y = f (x) is symmetric about the origin if f is odd. The usefulness of these functions stems
from the fact that ∫ π

−π f (x)dx = 0 if f is odd∫ π
−π f (x)dx = 2

∫ π
0 f (x)dx if f is even

These facts often simplify the computations of the Fourier coefficients. For example:

1. The Fourier sine coefficients bk all vanish if f is even.

2. The Fourier cosine coefficients ak all vanish if f is odd.

This is because f (x)sin(kx) is odd in the first case and f (x)cos(kx) is odd in the second case.
The functions 1, cos(kx), and sin(kx) that occur in the Fourier approximation for f (x) are all easy to

generate as an electrical voltage (when x is time). By summing these signals (with the amplitudes given
by the Fourier coefficients), it is possible to produce an electrical signal with (the approximation to) f (x)
as the voltage. Hence these Fourier approximations play a fundamental role in electronics.
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Finally, the Fourier approximations f1, f2, . . . of a function f get better and better as n increases. The
reason is that the subspaces Fn increase:

F1 ⊆ F2 ⊆ F3 ⊆ · · ·⊆ Fn ⊆ · · ·

So, because fn = projFn
f , we get (see the discussion following Example 10.2.6)

‖ f − f1‖ ≥ ‖ f − f2‖ ≥ · · ·≥ ‖ f − fn‖ ≥ · · ·

These numbers ‖ f − fn‖ approach zero; in fact, we have the following fundamental theorem.

Theorem 10.5.2

Let f be any continuous function in C[−π , π ]. Then

fn(x) approaches f (x) for all x such that −π < x < π .7

It shows that f has a representation as an infinite series, called the Fourier series of f :

f (x) = a0 +a1 cosx+b1 sinx+a2 cos(2x)+b2 sin(2x)+ · · ·

whenever−π < x < π . A full discussion of Theorem 10.5.2 is beyond the scope of this book. This subject
had great historical impact on the development of mathematics, and has become one of the standard tools
in science and engineering.

Thus the Fourier series for the function f in Example 10.5.1 is

f (x) = π
2 +

4
π

{
cosx+ 1

32 cos(3x)+ 1
52 cos(5x)+ 1

72 cos(7x)+ · · ·
}

Since f (0) = π and cos(0) = 1, taking x = 0 leads to the series

π2

8 = 1+ 1
32 +

1
52 +

1
72 + · · ·

Example 10.5.2

Expand f (x) = x on the interval [−π , π ] in a Fourier series, and so obtain a series expansion of π
4 .

Solution. Here f is an odd function so all the Fourier cosine coefficients ak are zero. As to the sine
coefficients:

bk =
1
π

∫ π

−π
xsin(kx)dx = 2

k (−1)k+1 for k ≥ 1

where we omit the details of the integration by parts. Hence the Fourier series for x is

x = 2[sinx− 1
2 sin(2x)+ 1

3 sin(3x)− 1
4 sin(4x)+ . . . ]

for −π < x < π . In particular, taking x = π
2 gives an infinite series for π

4 .
π
4 = 1− 1

3 +
1
5 −

1
7 +

1
9 − · · ·

Many other such formulas can be proved using Theorem 10.5.2.

7We have to be careful at the end points x = π or x =−π because sin(kπ) = sin(−kπ) and cos(kπ) = cos(−kπ).
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Exercises for 10.5

Exercise 10.5.1 In each case, find the Fourier approxi-
mation f5 of the given function in C[−π , π].

a. f (x) = π− x

b. f (x) = |x|=
{

x if 0≤ x≤ π
−x if −π ≤ x < 0

c. f (x) = x2

d. f (x) =

{
0 if −π ≤ x < 0
x if 0≤ x≤ π

Exercise 10.5.2

a. Find f5 for the even function f on [−π , π] satis-
fying f (x) = x for 0≤ x≤ π .

b. Find f6 for the even function f on [−π , π] satis-
fying f (x) = sinx for 0≤ x≤ π .

[Hint: If k > 1,
∫

sin xcos(kx)

= 1
2

[
cos[(k−1)x]

k−1 − cos[(k+1)x]
k+1

]
.]

Exercise 10.5.3

a. Prove that
∫ π
−π f (x)dx = 0 if f is odd and that∫ π

−π f (x)dx = 2
∫ π

0 f (x)dx if f is even.

b. Prove that 1
2 [ f (x) + f (−x)] is even and that

1
2 [ f (x)− f (−x)] is odd for any function f . Note
that they sum to f (x).

Exercise 10.5.4 Show that {1, cosx, cos(2x), cos(3x), . . .}
is an orthogonal set in C[0, π] with respect to the inner
product 〈 f , g〉=

∫ π
0 f (x)g(x)dx.

Exercise 10.5.5

a. Show that π2

8 = 1+ 1
32 +

1
52 + · · · using Exercise

10.5.1(b).

b. Show that π2

12 = 1− 1
22 +

1
32 − 1

42 + · · · using Exer-
cise 10.5.1(c).


