
Chapter 6

Vector Spaces

In this chapter we introduce vector spaces in full generality. The reader will notice some similarity with
the discussion of the space Rn in Chapter 5. In fact much of the present material has been developed in
that context, and there is some repetition. However, Chapter 6 deals with the notion of an abstract vector
space, a concept that will be new to most readers. It turns out that there are many systems in which a
natural addition and scalar multiplication are defined and satisfy the usual rules familiar from Rn. The
study of abstract vector spaces is a way to deal with all these examples simultaneously. The new aspect is
that we are dealing with an abstract system in which all we know about the vectors is that they are objects
that can be added and multiplied by a scalar and satisfy rules familiar from Rn.

The novel thing is the abstraction. Getting used to this new conceptual level is facilitated by the work
done in Chapter 5: First, the vector manipulations are familiar, giving the reader more time to become
accustomed to the abstract setting; and, second, the mental images developed in the concrete setting of Rn

serve as an aid to doing many of the exercises in Chapter 6.
The concept of a vector space was first introduced in 1844 by the German mathematician Hermann

Grassmann (1809-1877), but his work did not receive the attention it deserved. It was not until 1888 that
the Italian mathematician Guiseppe Peano (1858-1932) clarified Grassmann’s work in his book Calcolo

Geometrico and gave the vector space axioms in their present form. Vector spaces became established with
the work of the Polish mathematician Stephan Banach (1892-1945), and the idea was finally accepted in
1918 when Hermann Weyl (1885-1955) used it in his widely read book Raum-Zeit-Materie (“Space-Time-
Matter”), an introduction to the general theory of relativity.

6.1 Examples and Basic Properties

Many mathematical entities have the property that they can be added and multiplied by a number. Numbers
themselves have this property, as do m×n matrices: The sum of two such matrices is again m×n as is any
scalar multiple of such a matrix. Polynomials are another familiar example, as are the geometric vectors
in Chapter 4. It turns out that there are many other types of mathematical objects that can be added and
multiplied by a scalar, and the general study of such systems is introduced in this chapter. Remarkably,
much of what we could say in Chapter 5 about the dimension of subspaces in Rn can be formulated in this
generality.
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328 Vector Spaces

Definition 6.1 Vector Spaces

A vector space consists of a nonempty set V of objects (called vectors) that can be added, that can
be multiplied by a real number (called a scalar in this context), and for which certain axioms
hold.1If v and w are two vectors in V , their sum is expressed as v+w, and the scalar product of v
by a real number a is denoted as av. These operations are called vector addition and scalar
multiplication, respectively, and the following axioms are assumed to hold.

Axioms for vector addition

A1. If u and v are in V , then u+v is in V .

A2. u+v = v+u for all u and v in V .

A3. u+(v+w) = (u+v)+w for all u, v, and w in V .

A4. An element 0 in V exists such that v+0 = v = 0+v for every v in V .

A5. For each v in V , an element −v in V exists such that −v+v = 0 and v+(−v) = 0.

Axioms for scalar multiplication

S1. If v is in V , then av is in V for all a in R.

S2. a(v+w) = av+aw for all v and w in V and all a in R.

S3. (a+b)v = av+bv for all v in V and all a and b in R.

S4. a(bv) = (ab)v for all v in V and all a and b in R.

S5. 1v = v for all v in V .

The content of axioms A1 and S1 is described by saying that V is closed under vector addition and scalar
multiplication. The element 0 in axiom A4 is called the zero vector, and the vector −v in axiom A5 is
called the negative of v.

The rules of matrix arithmetic, when applied to Rn, give

Example 6.1.1

Rn is a vector space using matrix addition and scalar multiplication.2

It is important to realize that, in a general vector space, the vectors need not be n-tuples as in Rn. They
can be any kind of objects at all as long as the addition and scalar multiplication are defined and the axioms
are satisfied. The following examples illustrate the diversity of the concept.

The space Rn consists of special types of matrices. More generally, let Mmn denote the set of all m×n

matrices with real entries. Then Theorem 2.1.1 gives:

1The scalars will usually be real numbers, but they could be complex numbers, or elements of an algebraic system called a
field. Another example is the field Q of rational numbers. We will look briefly at finite fields in Section 8.8.

2We will usually write the vectors in Rn as n-tuples. However, if it is convenient, we will sometimes denote them as rows
or columns.
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Example 6.1.2

The set Mmn of all m×n matrices is a vector space using matrix addition and scalar multiplication.
The zero element in this vector space is the zero matrix of size m×n, and the vector space negative
of a matrix (required by axiom A5) is the usual matrix negative discussed in Section 2.1. Note that
Mmn is just Rmn in different notation.

In Chapter 5 we identified many important subspaces of Rn such as im A and null A for a matrix A. These
are all vector spaces.

Example 6.1.3

Show that every subspace of Rn is a vector space in its own right using the addition and scalar
multiplication of Rn.

Solution. Axioms A1 and S1 are two of the defining conditions for a subspace U of Rn (see
Section 5.1). The other eight axioms for a vector space are inherited from Rn. For example, if x

and y are in U and a is a scalar, then a(x+y) = ax+ay because x and y are in Rn. This shows that
axiom S2 holds for U ; similarly, the other axioms also hold for U .

Example 6.1.4

Let V denote the set of all ordered pairs (x, y) and define addition in V as in R2. However, define a
new scalar multiplication in V by

a(x, y) = (ay, ax)

Determine if V is a vector space with these operations.

Solution. Axioms A1 to A5 are valid for V because they hold for matrices. Also a(x, y) = (ay, ax)
is again in V , so axiom S1 holds. To verify axiom S2, let v = (x, y) and w = (x1, y1) be typical
elements in V and compute

a(v+w) = a(x+ x1, y+ y1) = (a(y+ y1), a(x+ x1))

av+aw = (ay, ax)+(ay1, ax1) = (ay+ay1, ax+ax1)

Because these are equal, axiom S2 holds. Similarly, the reader can verify that axiom S3 holds.
However, axiom S4 fails because

a(b(x, y)) = a(by, bx) = (abx, aby)

need not equal ab(x, y) = (aby, abx). Hence, V is not a vector space. (In fact, axiom S5 also fails.)

Sets of polynomials provide another important source of examples of vector spaces, so we review some
basic facts. A polynomial in an indeterminate x is an expression

p(x) = a0 +a1x+a2x2 + · · ·+anxn
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where a0, a1, a2, . . . , an are real numbers called the coefficients of the polynomial. If all the coefficients
are zero, the polynomial is called the zero polynomial and is denoted simply as 0. If p(x) #= 0, the
highest power of x with a nonzero coefficient is called the degree of p(x) denoted as deg p(x). The
coefficient itself is called the leading coefficient of p(x). Hence deg (3+5x) = 1, deg (1+ x+ x2) = 2,
and deg (4) = 0. (The degree of the zero polynomial is not defined.)

Let P denote the set of all polynomials and suppose that

p(x) = a0 +a1x+a2x2 + · · ·
q(x) = b0 +b1x+b2x2 + · · ·

are two polynomials in P (possibly of different degrees). Then p(x) and q(x) are called equal [written
p(x) = q(x)] if and only if all the corresponding coefficients are equal—that is, a0 = b0, a1 = b1, a2 = b2,
and so on. In particular, a0 +a1x+a2x2 + · · · = 0 means that a0 = 0, a1 = 0, a2 = 0, . . . , and this is the
reason for calling x an indeterminate. The set P has an addition and scalar multiplication defined on it as
follows: if p(x) and q(x) are as before and a is a real number,

p(x)+q(x) = (a0 +b0)+(a1 +b1)x+(a2 +b2)x
2 + · · ·

ap(x) = aa0 +(aa1)x+(aa2)x
2 + · · ·

Evidently, these are again polynomials, so P is closed under these operations, called pointwise addition
and scalar multiplication. The other vector space axioms are easily verified, and we have

Example 6.1.5

The set P of all polynomials is a vector space with the foregoing addition and scalar multiplication.
The zero vector is the zero polynomial, and the negative of a polynomial
p(x) = a0 +a1x+a2x2 + . . . is the polynomial−p(x) =−a0−a1x−a2x2− . . . obtained by
negating all the coefficients.

There is another vector space of polynomials that will be referred to later.

Example 6.1.6

Given n≥ 1, let Pn denote the set of all polynomials of degree at most n, together with the zero
polynomial. That is

Pn = {a0 +a1x+a2x2 + · · ·+anxn | a0, a1, a2, . . . , an in R}.

Then Pn is a vector space. Indeed, sums and scalar multiples of polynomials in Pn are again in Pn,
and the other vector space axioms are inherited from P. In particular, the zero vector and the
negative of a polynomial in Pn are the same as those in P.

If a and b are real numbers and a < b, the interval [a, b] is defined to be the set of all real numbers
x such that a ≤ x ≤ b. A (real-valued) function f on [a, b] is a rule that associates to every number x in
[a, b] a real number denoted f (x). The rule is frequently specified by giving a formula for f (x) in terms of
x. For example, f (x) = 2x, f (x) = sinx, and f (x) = x2+1 are familiar functions. In fact, every polynomial
p(x) can be regarded as the formula for a function p.
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1

1

O

y =−x = g(x)

y = f (x)+g(x)
= x2− x

y = x2 = f (x)

x

y The set of all functions on [a, b] is denoted F[a, b]. Two functions
f and g in F[a, b] are equal if f (x) = g(x) for every x in [a, b], and we
describe this by saying that f and g have the same action. Note that two
polynomials are equal in P (defined prior to Example 6.1.5) if and only if
they are equal as functions.

If f and g are two functions in F[a, b], and if r is a real number, define
the sum f +g and the scalar product r f by

( f +g)(x) = f (x)+g(x) for each x in [a, b]

(r f )(x) = r f (x) for each x in [a, b]

In other words, the action of f + g upon x is to associate x with the number f (x) + g(x), and r f

associates x with r f (x). The sum of f (x) = x2 and g(x) = −x is shown in the diagram. These operations
on F[a, b] are called pointwise addition and scalar multiplication of functions and they are the usual
operations familiar from elementary algebra and calculus.

Example 6.1.7

The set F[a, b] of all functions on the interval [a, b] is a vector space using pointwise addition and
scalar multiplication. The zero function (in axiom A4), denoted 0, is the constant function defined
by

0(x) = 0 for each x in [a, b]

The negative of a function f is denoted − f and has action defined by

(− f )(x) =− f (x) for each x in [a, b]

Axioms A1 and S1 are clearly satisfied because, if f and g are functions on [a, b], then f +g and
r f are again such functions. The verification of the remaining axioms is left as Exercise 6.1.14.

Other examples of vector spaces will appear later, but these are sufficiently varied to indicate the scope
of the concept and to illustrate the properties of vector spaces to be discussed. With such a variety of
examples, it may come as a surprise that a well-developed theory of vector spaces exists. That is, many
properties can be shown to hold for all vector spaces and hence hold in every example. Such properties
are called theorems and can be deduced from the axioms. Here is an important example.

Theorem 6.1.1: Cancellation

Let u, v, and w be vectors in a vector space V . If v+u = v+w, then u = w.

Proof. We are given v+u = v+w. If these were numbers instead of vectors, we would simply subtract v

from both sides of the equation to obtain u = w. This can be accomplished with vectors by adding −v to
both sides of the equation. The steps (using only the axioms) are as follows:

v+u = v+w

−v+(v+u) =−v+(v+w) (axiom A5)
(−v+v)+u = (−v+v)+w (axiom A3)
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0+u = 0+w (axiom A5)
u = w (axiom A4)

This is the desired conclusion.3

As with many good mathematical theorems, the technique of the proof of Theorem 6.1.1 is at least as
important as the theorem itself. The idea was to mimic the well-known process of numerical subtraction
in a vector space V as follows: To subtract a vector v from both sides of a vector equation, we added −v

to both sides. With this in mind, we define difference u−v of two vectors in V as

u−v = u+(−v)

We shall say that this vector is the result of having subtracted v from u and, as in arithmetic, this operation
has the property given in Theorem 6.1.2.

Theorem 6.1.2

If u and v are vectors in a vector space V , the equation

x+v = u

has one and only one solution x in V given by

x = u−v

Proof. The difference x = u−v is indeed a solution to the equation because (using several axioms)

x+v = (u−v)+v = [u+(−v)]+v = u+(−v+v) = u+0 = u

To see that this is the only solution, suppose x1 is another solution so that x1 +v = u. Then x+v = x1+v

(they both equal u), so x = x1 by cancellation.

Similarly, cancellation shows that there is only one zero vector in any vector space and only one
negative of each vector (Exercises 6.1.10 and 6.1.11). Hence we speak of the zero vector and the negative
of a vector.

The next theorem derives some basic properties of scalar multiplication that hold in every vector space,
and will be used extensively.

Theorem 6.1.3

Let v denote a vector in a vector space V and let a denote a real number.

1. 0v = 0.

2. a0 = 0.

3. If av = 0, then either a = 0 or v = 0.

4. (−1)v =−v.

3Observe that none of the scalar multiplication axioms are needed here.
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5. (−a)v =−(av) = a(−v).

Proof.

1. Observe that 0v+0v = (0+0)v = 0v = 0v+0 where the first equality is by axiom S3. It follows
that 0v = 0 by cancellation.

2. The proof is similar to that of (1), and is left as Exercise 6.1.12(a).

3. Assume that av = 0. If a = 0, there is nothing to prove; if a #= 0, we must show that v = 0. But
a #= 0 means we can scalar-multiply the equation av = 0 by the scalar 1

a . The result (using (2) and
Axioms S5 and S4) is

v = 1v =
(1

aa
)

v = 1
a(av) = 1

a0 = 0

4. We have −v+v = 0 by axiom A5. On the other hand,

(−1)v+v = (−1)v+1v = (−1+1)v = 0v = 0

using (1) and axioms S5 and S3. Hence (−1)v+ v = −v + v (because both are equal to 0), so
(−1)v =−v by cancellation.

5. The proof is left as Exercise 6.1.12.4

The properties in Theorem 6.1.3 are familiar for matrices; the point here is that they hold in every vector
space. It is hard to exaggerate the importance of this observation.

Axiom A3 ensures that the sum u+(v+w) = (u+v)+w is the same however it is formed, and we
write it simply as u+ v+w. Similarly, there are different ways to form any sum v1 + v2 + · · ·+ vn, and
Axiom A3 guarantees that they are all equal. Moreover, Axiom A2 shows that the order in which the
vectors are written does not matter (for example: u+v+w+ z = z+u+w+v).

Similarly, Axioms S2 and S3 extend. For example

a(u+v+w) = a [u+(v+w)] = au+a(v+w) = au+av+aw

for all a, u, v, and w. Similarly (a+b+ c)v = av+bv+ cv hold for all values of a, b, c, and v (verify).
More generally,

a(v1 +v2 + · · ·+vn) = av1 +av2 + · · ·+avn

(a1 +a2 + · · ·+an)v = a1v+a2v+ · · ·+anv

hold for all n≥ 1, all numbers a, a1, . . . , an, and all vectors, v, v1, . . . , vn. The verifications are by induc-
tion and are left to the reader (Exercise 6.1.13). These facts—together with the axioms, Theorem 6.1.3,
and the definition of subtraction—enable us to simplify expressions involving sums of scalar multiples of
vectors by collecting like terms, expanding, and taking out common factors. This has been discussed for
the vector space of matrices in Section 2.1 (and for geometric vectors in Section 4.1); the manipulations
in an arbitrary vector space are carried out in the same way. Here is an illustration.
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Example 6.1.8

If u, v, and w are vectors in a vector space V , simplify the expression

2(u+3w)−3(2w−v)−3[2(2u+v−4w)−4(u−2w)]

Solution. The reduction proceeds as though u, v, and w were matrices or variables.

2(u+3w)−3(2w−v)−3[2(2u+v−4w)−4(u−2w)]

= 2u+6w−6w+3v−3[4u+2v−8w−4u+8w]

= 2u+3v−3[2v]

= 2u+3v−6v

= 2u−3v

Condition (2) in Theorem 6.1.3 points to another example of a vector space.

Example 6.1.9

A set {0} with one element becomes a vector space if we define

0+0 = 0 and a0 = 0 for all scalars a.

The resulting space is called the zero vector space and is denoted {0}.

The vector space axioms are easily verified for {0}. In any vector space V , Theorem 6.1.3 shows that the
zero subspace (consisting of the zero vector of V alone) is a copy of the zero vector space.

Exercises for 6.1

Exercise 6.1.1 Let V denote the set of ordered triples
(x, y, z) and define addition in V as in R3. For each of
the following definitions of scalar multiplication, decide
whether V is a vector space.

a. a(x, y, z) = (ax, y, az)

b. a(x, y, z) = (ax, 0, az)

c. a(x, y, z) = (0, 0, 0)

d. a(x, y, z) = (2ax, 2ay, 2az)

Exercise 6.1.2 Are the following sets vector spaces with
the indicated operations? If not, why not?

a. The set V of nonnegative real numbers; ordinary
addition and scalar multiplication.

b. The set V of all polynomials of degree ≥ 3,
together with 0; operations of P.

c. The set of all polynomials of degree ≤ 3; opera-
tions of P.

d. The set {1, x, x2, . . .}; operations of P.

e. The set V of all 2 × 2 matrices of the form[
a b

0 c

]
; operations of M22.

f. The set V of 2× 2 matrices with equal column
sums; operations of M22.
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g. The set V of 2×2 matrices with zero determinant;
usual matrix operations.

h. The set V of real numbers; usual operations.

i. The set V of complex numbers; usual addition and
multiplication by a real number.

j. The set V of all ordered pairs (x, y) with the
addition of R2, but using scalar multiplication
a(x, y) = (ax, −ay).

k. The set V of all ordered pairs (x, y) with the
addition of R2, but using scalar multiplication
a(x, y) = (x, y) for all a in R.

l. The set V of all functions f : R→ R with point-
wise addition, but scalar multiplication defined by
(a f )(x) = f (ax).

m. The set V of all 2×2 matrices whose entries sum
to 0; operations of M22.

n. The set V of all 2× 2 matrices with the addi-
tion of M22 but scalar multiplication ∗ defined by
a∗X = aXT .

Exercise 6.1.3 Let V be the set of positive real numbers
with vector addition being ordinary multiplication, and
scalar multiplication being a · v = va. Show that V is a
vector space.

Exercise 6.1.4 If V is the set of ordered pairs (x, y) of
real numbers, show that it is a vector space with addition
(x, y)+ (x1, y1) = (x+ x1, y+ y1 + 1) and scalar mul-
tiplication a(x, y) = (ax, ay+ a− 1). What is the zero
vector in V ?

Exercise 6.1.5 Find x and y (in terms of u and v) such
that:

2x + y= u

5x + 3y = v

a. 3x− 2y= u

4x− 5y= v

b.

Exercise 6.1.6 In each case show that the condition
au+bv+ cw = 0 in V implies that a = b = c = 0.

a. V = R4; u = (2, 1, 0, 2), v = (1, 1, −1, 0),
w = (0, 1, 2, 1)

b. V = M22; u =

[
1 0
0 1

]
, v =

[
0 1
1 0

]
,

w =

[
1 1
1 −1

]

c. V = P; u = x3 + x, v = x2 +1, w = x3− x2 + x+1

d. V = F[0, π]; u = sinx, v = cosx, w = 1—the con-
stant function

Exercise 6.1.7 Simplify each of the following.

a. 3[2(u−2v−w)+3(w−v)]−7(u−3v−w)

b. 4(3u−v+w)−2[(3u−2v)−3(v−w)]
+6(w−u−v)

Exercise 6.1.8 Show that x = v is the only solution to
the equation x+x = 2v in a vector space V . Cite all ax-
ioms used.

Exercise 6.1.9 Show that −0 = 0 in any vector space.
Cite all axioms used.

Exercise 6.1.10 Show that the zero vector 0 is uniquely
determined by the property in axiom A4.

Exercise 6.1.11 Given a vector v, show that its negative
−v is uniquely determined by the property in axiom A5.

Exercise 6.1.12

a. Prove (2) of Theorem 6.1.3. [Hint: Axiom S2.]

b. Prove that (−a)v = −(av) in Theorem 6.1.3 by
first computing (−a)v+ av. Then do it using (4)
of Theorem 6.1.3 and axiom S4.

c. Prove that a(−v) = −(av) in Theorem 6.1.3 in
two ways, as in part (b).

Exercise 6.1.13 Let v, v1, . . . , vn denote vectors in a
vector space V and let a, a1, . . . , an denote numbers.
Use induction on n to prove each of the following.

a. a(v1 +v2 + · · ·+vn) = av1 +av2 + · · ·+avn

b. (a1 +a2 + · · ·+an)v = a1v+a2v+ · · ·+anv
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Exercise 6.1.14 Verify axioms A2—A5 and S2—S5 for
the space F[a, b] of functions on [a, b] (Example 6.1.7).

Exercise 6.1.15 Prove each of the following for vectors
u and v and scalars a and b.

a. If av = 0, then a = 0 or v = 0.

b. If av = bv and v #= 0, then a = b.

c. If av = aw and a #= 0, then v = w.

Exercise 6.1.16 By calculating (1+ 1)(v+w) in two
ways (using axioms S2 and S3), show that axiom A2 fol-
lows from the other axioms.

Exercise 6.1.17 Let V be a vector space, and define V n

to be the set of all n-tuples (v1, v2, . . . , vn) of n vec-
tors vi, each belonging to V . Define addition and scalar
multiplication in V n as follows:

(u1, u2, . . . , un)+ (v1, v2, . . . , vn)

= (u1 +v1, u2 +v2, . . . , un +vn)

a(v1, v2, . . . , vn) = (av1, av2, . . . , avn)

Show that V n is a vector space.

Exercise 6.1.18 Let V n be the vector space of n-tuples
from the preceding exercise, written as columns. If A

is an m× n matrix, and X is in V n, define AX in V m by
matrix multiplication. More precisely, if

A = [ai j] and X =




v1
...

vn



 , let AX =




u1
...

un





where ui = ai1v1 +ai2v2 + · · ·+ainvn for each i.
Prove that:

a. B(AX) = (BA)X

b. (A+A1)X = AX +A1X

c. A(X +X1) = AX +AX1

d. (kA)X = k(AX) = A(kX) if k is any number

e. IX = X if I is the n×n identity matrix

f. Let E be an elementary matrix obtained by per-
forming a row operation on the rows of In (see
Section 2.5). Show that EX is the column re-
sulting from performing that same row operation
on the vectors (call them rows) of X . [Hint:
Lemma 2.5.1.]

6.2 Subspaces and Spanning Sets

Chapter 5 is essentially about the subspaces of Rn. We now extend this notion.

Definition 6.2 Subspaces of a Vector Space

If V is a vector space, a nonempty subset U ⊆V is called a subspace of V if U is itself a vector
space using the addition and scalar multiplication of V .

Subspaces ofRn (as defined in Section 5.1) are subspaces in the present sense by Example 6.1.3. Moreover,
the defining properties for a subspace of Rn actually characterize subspaces in general.



6.2. Subspaces and Spanning Sets 337

Theorem 6.2.1: Subspace Test

A subset U of a vector space is a subspace of V if and only if it satisfies the following three
conditions:

1. 0 lies in U where 0 is the zero vector of V .

2. If u1 and u2 are in U , then u1 +u2 is also in U .

3. If u is in U , then au is also in U for each scalar a.

Proof. If U is a subspace of V , then (2) and (3) hold by axioms A1 and S1 respectively, applied to the
vector space U . Since U is nonempty (it is a vector space), choose u in U . Then (1) holds because 0 = 0u

is in U by (3) and Theorem 6.1.3.
Conversely, if (1), (2), and (3) hold, then axioms A1 and S1 hold because of (2) and (3), and axioms

A2, A3, S2, S3, S4, and S5 hold in U because they hold in V . Axiom A4 holds because the zero vector 0

of V is actually in U by (1), and so serves as the zero of U . Finally, given u in U , then its negative−u in V

is again in U by (3) because −u = (−1)u (again using Theorem 6.1.3). Hence −u serves as the negative
of u in U .

Note that the proof of Theorem 6.2.1 shows that if U is a subspace of V , then U and V share the same zero
vector, and that the negative of a vector in the space U is the same as its negative in V .

Example 6.2.1

If V is any vector space, show that {0} and V are subspaces of V .

Solution. U =V clearly satisfies the conditions of the subspace test. As to U = {0}, it satisfies the
conditions because 0+0 = 0 and a0 = 0 for all a in R.

The vector space {0} is called the zero subspace of V .

Example 6.2.2

Let v be a vector in a vector space V . Show that the set

Rv = {av | a in R}

of all scalar multiples of v is a subspace of V .

Solution. Because 0 = 0v, it is clear that 0 lies in Rv. Given two vectors av and a1v in Rv, their
sum av+a1v = (a+a1)v is also a scalar multiple of v and so lies in Rv. Hence Rv is closed under
addition. Finally, given av, r(av) = (ra)v lies in Rv for all r ∈ R, so Rv is closed under scalar
multiplication. Hence the subspace test applies.

In particular, given d #= 0 in R3, Rd is the line through the origin with direction vector d.
The space Rv in Example 6.2.2 is described by giving the form of each vector in Rv. The next example

describes a subset U of the space Mnn by giving a condition that each matrix of U must satisfy.
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Example 6.2.3

Let A be a fixed matrix in Mnn. Show that U = {X in Mnn | AX = XA} is a subspace of Mnn.

Solution. If 0 is the n×n zero matrix, then A0 = 0A, so 0 satisfies the condition for membership in
U . Next suppose that X and X1 lie in U so that AX = XA and AX1 = X1A. Then

A(X +X1) = AX +AX1 = XA+X1A+(X +X1)A

A(aX) = a(AX) = a(XA) = (aX)A

for all a in R, so both X +X1 and aX lie in U . Hence U is a subspace of Mnn.

Suppose p(x) is a polynomial and a is a number. Then the number p(a) obtained by replacing x by a

in the expression for p(x) is called the evaluation of p(x) at a. For example, if p(x) = 5−6x+2x2, then
the evaluation of p(x) at a = 2 is p(2) = 5−12+8 = 1. If p(a) = 0, the number a is called a root of p(x).

Example 6.2.4

Consider the set U of all polynomials in P that have 3 as a root:

U = {p(x) ∈ P | p(3) = 0}

Show that U is a subspace of P.

Solution. Clearly, the zero polynomial lies in U . Now let p(x) and q(x) lie in U so p(3) = 0 and
q(3) = 0. We have (p+q)(x) = p(x)+q(x) for all x, so (p+q)(3) = p(3)+q(3) = 0+0 = 0, and
U is closed under addition. The verification that U is closed under scalar multiplication is similar.

Recall that the space Pn consists of all polynomials of the form

a0 +a1x+a2x2 + · · ·+anxn

where a0, a1, a2, . . . , an are real numbers, and so is closed under the addition and scalar multiplication in
P. Moreover, the zero polynomial is included in Pn. Thus the subspace test gives Example 6.2.5.

Example 6.2.5

Pn is a subspace of P for each n≥ 0.

The next example involves the notion of the derivative f ′ of a function f . (If the reader is not fa-
miliar with calculus, this example may be omitted.) A function f defined on the interval [a, b] is called
differentiable if the derivative f ′(r) exists at every r in [a, b].

Example 6.2.6

Show that the subset D[a, b] of all differentiable functions on [a, b] is a subspace of the vector
space F[a, b] of all functions on [a, b].
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Solution. The derivative of any constant function is the constant function 0; in particular, 0 itself is
differentiable and so lies in D[a, b]. If f and g both lie in D[a, b] (so that f ′ and g′ exist), then it is
a theorem of calculus that f +g and r f are both differentiable for any r ∈ R. In fact,
( f +g)′ = f ′+g′ and (r f )′ = r f ′, so both lie in D[a, b]. This shows that D[a, b] is a subspace of
F[a, b].

Linear Combinations and Spanning Sets

Definition 6.3 Linear Combinations and Spanning

Let {v1, v2, . . . , vn} be a set of vectors in a vector space V . As in Rn, a vector v is called a linear
combination of the vectors v1, v2, . . . , vn if it can be expressed in the form

v = a1v1 +a2v2 + · · ·+anvn

where a1, a2, . . . , an are scalars, called the coefficients of v1, v2, . . . , vn. The set of all linear
combinations of these vectors is called their span, and is denoted by

span{v1, v2, . . . , vn}= {a1v1 +a2v2 + · · ·+anvn | ai in R}

If it happens that V = span{v1, v2, . . . , vn}, these vectors are called a spanning set for V . For example,
the span of two vectors v and w is the set

span{v, w}= {sv+ tw | s and t in R}

of all sums of scalar multiples of these vectors.

Example 6.2.7

Consider the vectors p1 = 1+x+4x2 and p2 = 1+5x+x2 in P2. Determine whether p1 and p2 lie
in span{1+2x− x2, 3+5x+2x2}.

Solution. For p1, we want to determine if s and t exist such that

p1 = s(1+2x− x2)+ t(3+5x+2x2)

Equating coefficients of powers of x (where x0 = 1) gives

1 = s+3t, 1 = 2s+5t, and 4 =−s+2t

These equations have the solution s =−2 and t = 1, so p1 is indeed in
span{1+2x− x2, 3+5x+2x2}.
Turning to p2 = 1+5x+ x2, we are looking for s and t such that

p2 = s(1+2x− x2)+ t(3+5x+2x2)

Again equating coefficients of powers of x gives equations 1 = s+3t, 5 = 2s+5t, and 1 =−s+2t.
But in this case there is no solution, so p2 is not in span{1+2x− x2, 3+5x+2x2}.
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We saw in Example 5.1.6 that Rm = span{e1, e2, . . . , em} where the vectors e1, e2, . . . , em are the
columns of the m×m identity matrix. Of course Rm = Mm1 is the set of all m×1 matrices, and there is
an analogous spanning set for each space Mmn. For example, each 2×2 matrix has the form

[
a b

c d

]
= a

[
1 0
0 0

]
+b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+d

[
0 0
0 1

]

so

M22 = span
{[

1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
,
[

0 0
0 1

]}

Similarly, we obtain

Example 6.2.8

Mmn is the span of the set of all m×n matrices with exactly one entry equal to 1, and all other
entries zero.

The fact that every polynomial in Pn has the form a0 +a1x+a2x2 + · · ·+anxn where each ai is in R
shows that

Example 6.2.9

Pn = span{1, x, x2, . . . , xn}.

In Example 6.2.2 we saw that span{v} = {av | a in R} = Rv is a subspace for any vector v in a vector
space V . More generally, the span of any set of vectors is a subspace. In fact, the proof of Theorem 5.1.1
goes through to prove:

Theorem 6.2.2

Let U = span{v1, v2, . . . , vn} in a vector space V . Then:

1. U is a subspace of V containing each of v1, v2, . . . , vn.

2. U is the “smallest” subspace containing these vectors in the sense that any subspace that
contains each of v1, v2, . . . , vn must contain U .

Here is how condition 2 in Theorem 6.2.2 is used. Given vectors v1, . . . , vk in a vector space V and a
subspace U ⊆V , then:

span{v1, . . . , vn}⊆U ⇔ each vi ∈U

The following examples illustrate this.

Example 6.2.10

Show that P3 = span{x2 + x3, x, 2x2 +1, 3}.

Solution. Write U = span{x2 + x3, x, 2x2 +1, 3}. Then U ⊆ P3, and we use the fact that
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P3 = span{1, x, x2, x3} to show that P3 ⊆U . In fact, x and 1 = 1
3 ·3 clearly lie in U . But then

successively,
x2 = 1

2 [(2x2 +1)−1] and x3 = (x2 + x3)− x2

also lie in U . Hence P3 ⊆U by Theorem 6.2.2.

Example 6.2.11

Let u and v be two vectors in a vector space V . Show that

span{u, v}= span{u+2v, u−v}

Solution. We have span{u+2v, u−v}⊆ span{u, v} by Theorem 6.2.2 because both u+2v and
u−v lie in span{u, v}. On the other hand,

u = 1
3(u+2v)+ 2

3(u−v) and v = 1
3(u+2v)− 1

3(u−v)

so span{u, v}⊆ span{u+2v, u−v}, again by Theorem 6.2.2.

Exercises for 6.2

Exercise 6.2.1 Which of the following are subspaces of
P3? Support your answer.

a. U = { f (x) | f (x) ∈ P3, f (2) = 1}

b. U = {xg(x) | g(x) ∈ P2}

c. U = {xg(x) | g(x) ∈ P3}

d. U = {xg(x)+ (1− x)h(x) | g(x) and h(x) ∈ P2}

e. U = The set of all polynomials in P3 with constant
term 0

f. U = { f (x) | f (x) ∈ P3, deg f (x) = 3}

Exercise 6.2.2 Which of the following are subspaces of
M22? Support your answer.

a. U =

{[
a b

0 c

]∣∣∣∣ a, b, and c in R

}

b. U =

{[
a b

c d

]∣∣∣∣ a+b = c+d; a, b, c, d in R

}

c. U = {A | A ∈M22, A = AT}

d. U = {A | A∈M22, AB= 0}, B a fixed 2×2 matrix

e. U = {A | A ∈M22, A2 = A}

f. U = {A | A ∈M22, A is not invertible}

g. U = {A | A ∈M22, BAC = CAB}, B and C fixed
2×2 matrices

Exercise 6.2.3 Which of the following are subspaces of
F[0, 1]? Support your answer.

a. U = { f | f (0) = 0}
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b. U = { f | f (0) = 1}

c. U = { f | f (0) = f (1)}

d. U = { f | f (x)≥ 0 for all x in [0, 1]}

e. U = { f | f (x) = f (y) for all x and y in [0, 1]}

f. U = { f | f (x+ y) = f (x)+ f (y) for all
x and y in [0, 1]}

g. U = { f | f is integrable and
∫ 1

0 f (x)dx = 0}

Exercise 6.2.4 Let A be an m× n matrix. For which
columns b in Rm is U = {x | x ∈Rn, Ax = b} a subspace
of Rn? Support your answer.

Exercise 6.2.5 Let x be a vector in Rn (written as a col-
umn), and define U = {Ax | A ∈Mmn}.

a. Show that U is a subspace of Rm.

b. Show that U = Rm if x #= 0.

Exercise 6.2.6 Write each of the following as a linear
combination of x+1, x2 + x, and x2 +2.

x2 +3x+2a. 2x2−3x+1b.

x2 +1c. xd.

Exercise 6.2.7 Determine whether v lies in span {u, w}
in each case.

a. v = 3x2−2x−1; u = x2 +1, w = x+2

b. v = x; u = x2 +1, w = x+2

c. v =

[
1 3
−1 1

]
; u =

[
1 −1
2 1

]
, w =

[
2 1
1 0

]

d. v =

[
1 −4
5 3

]
; u =

[
1 −1
2 1

]
, w =

[
2 1
1 0

]

Exercise 6.2.8 Which of the following functions lie in
span{cos2 x, sin2 x}? (Work in F[0, π].)

cos 2xa. 1b.

x2c. 1+ x2d.

Exercise 6.2.9

a. Show that R3 is spanned by
{(1, 0, 1), (1, 1, 0), (0, 1, 1)}.

b. Show that P2 is spanned by {1+2x2, 3x, 1+ x}.

c. Show that M22 is spanned by{[
1 0
0 0

]
,
[

1 0
0 1

]
,
[

0 1
1 0

]
,
[

1 1
0 1

]}
.

Exercise 6.2.10 If X and Y are two sets of vectors in a
vector space V , and if X ⊆ Y , show that
span X ⊆ span Y .

Exercise 6.2.11 Let u, v, and w denote vectors in a vec-
tor space V . Show that:

a. span {u, v, w}= span{u+v, u+w, v+w}

b. span {u, v, w}= span{u−v, u+w, w}

Exercise 6.2.12 Show that

span{v1, v2, . . . , vn, 0}= span{v1, v2, . . . , vn}

holds for any set of vectors {v1, v2, . . . , vn}.

Exercise 6.2.13 If X and Y are nonempty subsets of
a vector space V such that span X = span Y = V , must
there be a vector common to both X and Y ? Justify your
answer.

Exercise 6.2.14 Is it possible that {(1, 2, 0), (1, 1, 1)}
can span the subspace U = {(a, b, 0) | a and b in R}?

Exercise 6.2.15 Describe span{0}.

Exercise 6.2.16 Let v denote any vector in a vector
space V . Show that span {v}= span{av} for any a #= 0.

Exercise 6.2.17 Determine all subspaces of Rv where
v #= 0 in some vector space V .

Exercise 6.2.18 Suppose V = span{v1, v2, . . . , vn}. If
u = a1v1 + a2v2 + · · ·+ anvn where the ai are in R and
a1 #= 0, show that V = span {u, v2, . . . , vn}.

Exercise 6.2.19 If Mnn = span {A1, A2, . . . , Ak}, show
that Mnn = span{AT

1 , AT
2 , . . . , AT

k }.

Exercise 6.2.20 If Pn = span {p1(x), p2(x), . . . , pk(x)}
and a is in R, show that pi(a) #= 0 for some i.

Exercise 6.2.21 Let U be a subspace of a vector space
V .

a. If au is in U where a #= 0, show that u is in U .

b. If u and u+v are in U , show that v is in U .
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Exercise 6.2.22 Let U be a nonempty subset of a vector
space V . Show that U is a subspace of V if and only if
u1 +au2 lies in U for all u1 and u2 in U and all a in R.

Exercise 6.2.23 Let U = {p(x) in P | p(3) = 0} be the
set in Example 6.2.4. Use the factor theorem (see Sec-
tion 6.5) to show that U consists of multiples of x− 3;
that is, show that U = {(x−3)q(x) | q(x) ∈ P}. Use this
to show that U is a subspace of P.

Exercise 6.2.24 Let A1, A2, . . . , Am denote n×n matri-
ces. If 0 #= y ∈Rn and A1y = A2y = · · ·= Amy = 0, show
that {A1, A2, . . . , Am} cannot span Mnn.

Exercise 6.2.25 Let {v1, v2, . . . , vn} and
{u1, u2, . . . , un} be sets of vectors in a vector space,

and let

X =




v1
...

vn



 Y =




u1
...

un





as in Exercise 6.1.18.

a. Show that span {v1, . . . , vn}⊆ span{u1, . . . , un}
if and only if AY = X for some n×n matrix A.

b. If X = AY where A is invertible, show that
span {v1, . . . , vn}= span {u1, . . . , un}.

Exercise 6.2.26 If U and W are subspaces of a vector
space V , let U ∪W = {v | v is in U or v is in W}. Show
that U ∪W is a subspace if and only if U ⊆W or W ⊆U .

Exercise 6.2.27 Show that P cannot be spanned by a
finite set of polynomials.

6.3 Linear Independence and Dimension

Definition 6.4 Linear Independence and Dependence

As in Rn, a set of vectors {v1, v2, . . . , vn} in a vector space V is called linearly independent (or
simply independent) if it satisfies the following condition:

If s1v1 + s2v2 + · · ·+ snvn = 0, then s1 = s2 = · · ·= sn = 0.

A set of vectors that is not linearly independent is said to be linearly dependent (or simply
dependent).

The trivial linear combination of the vectors v1, v2, . . . , vn is the one with every coefficient zero:

0v1 +0v2 + · · ·+0vn

This is obviously one way of expressing 0 as a linear combination of the vectors v1, v2, . . . , vn, and they
are linearly independent when it is the only way.

Example 6.3.1

Show that {1+ x, 3x+ x2, 2+ x− x2} is independent in P2.

Solution. Suppose a linear combination of these polynomials vanishes.

s1(1+ x)+ s2(3x+ x2)+ s3(2+ x− x2) = 0
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Equating the coefficients of 1, x, and x2 gives a set of linear equations.

s1 + + 2s3 = 0
s1 + 3s2 + s3 = 0

s2− s3 = 0

The only solution is s1 = s2 = s3 = 0.

Example 6.3.2

Show that {sinx, cosx} is independent in the vector space F[0, 2π ] of functions defined on the
interval [0, 2π ].

Solution. Suppose that a linear combination of these functions vanishes.

s1(sinx)+ s2(cosx) = 0

This must hold for all values of x in [0, 2π ] (by the definition of equality in F[0, 2π ]). Taking
x = 0 yields s2 = 0 (because sin0 = 0 and cos0 = 1). Similarly, s1 = 0 follows from taking x = π

2
(because sin π

2 = 1 and cos π
2 = 0).

Example 6.3.3

Suppose that {u, v} is an independent set in a vector space V . Show that {u+2v, u−3v} is also
independent.

Solution. Suppose a linear combination of u+2v and u−3v vanishes:

s(u+2v)+ t(u−3v) = 0

We must deduce that s = t = 0. Collecting terms involving u and v gives

(s+ t)u+(2s−3t)v = 0

Because {u, v} is independent, this yields linear equations s+ t = 0 and 2s−3t = 0. The only
solution is s = t = 0.

Example 6.3.4

Show that any set of polynomials of distinct degrees is independent.

Solution. Let p1, p2, . . . , pm be polynomials where deg (pi) = di. By relabelling if necessary, we
may assume that d1 > d2 > · · ·> dm. Suppose that a linear combination vanishes:

t1p1 + t2p2 + · · ·+ tm pm = 0

where each ti is in R. As deg (p1) = d1, let axd1 be the term in p1 of highest degree, where a #= 0.
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Since d1 > d2 > · · ·> dm, it follows that t1axd1 is the only term of degree d1 in the linear
combination t1p1 + t2p2 + · · ·+ tm pm = 0. This means that t1axd1 = 0, whence t1a = 0, hence
t1 = 0 (because a #= 0). But then t2p2 + · · ·+ tm pm = 0 so we can repeat the argument to show that
t2 = 0. Continuing, we obtain ti = 0 for each i, as desired.

Example 6.3.5

Suppose that A is an n×n matrix such that Ak = 0 but Ak−1 #= 0. Show that
B = {I, A, A2, . . . , Ak−1} is independent in Mnn.

Solution. Suppose r0I + r1A+ r2A2 + · · ·+ rk−1Ak−1 = 0. Multiply by Ak−1:

r0Ak−1 + r1Ak + r2Ak+1 + · · ·+ rk−1A2k−2 = 0

Since Ak = 0, all the higher powers are zero, so this becomes r0Ak−1 = 0. But Ak−1 #= 0, so r0 = 0,
and we have r1A1 + r2A2 + · · ·+ rk−1Ak−1 = 0. Now multiply by Ak−2 to conclude that r1 = 0.
Continuing, we obtain ri = 0 for each i, so B is independent.

The next example collects several useful properties of independence for reference.

Example 6.3.6

Let V denote a vector space.

1. If v #= 0 in V , then {v} is an independent set.

2. No independent set of vectors in V can contain the zero vector.

Solution.

1. Let tv = 0, t in R. If t #= 0, then v = 1v = 1
t (tv) =

1
t 0 = 0, contrary to assumption. So t = 0.

2. If {v1, v2, . . . , vk} is independent and (say) v2 = 0, then 0v1 +1v2 + · · ·+0vk = 0 is a
nontrivial linear combination that vanishes, contrary to the independence of
{v1, v2, . . . , vk}.

A set of vectors is independent if 0 is a linear combination in a unique way. The following theorem
shows that every linear combination of these vectors has uniquely determined coefficients, and so extends
Theorem 5.2.1.

Theorem 6.3.1

Let {v1, v2, . . . , vn} be a linearly independent set of vectors in a vector space V . If a vector v has
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two (ostensibly different) representations

v = s1v1 + s2v2 + · · · + snvn

v = t1v1 + t2v2 + · · · + tnvn

as linear combinations of these vectors, then s1 = t1, s2 = t2, . . . , sn = tn. In other words, every
vector in V can be written in a unique way as a linear combination of the vi.

Proof. Subtracting the equations given in the theorem gives

(s1− t1)v1 +(s2− t2)v2 + · · ·+(sn− tn)vn = 0

The independence of {v1, v2, . . . , vn} gives si− ti = 0 for each i, as required.

The following theorem extends (and proves) Theorem 5.2.4, and is one of the most useful results in
linear algebra.

Theorem 6.3.2: Fundamental Theorem

Suppose a vector space V can be spanned by n vectors. If any set of m vectors in V is linearly
independent, then m≤ n.

Proof. Let V = span{v1, v2, . . . , vn}, and suppose that {u1, u2, . . . , um} is an independent set in V .
Then u1 = a1v1 +a2v2 + · · ·+anvn where each ai is in R. As u1 #= 0 (Example 6.3.6), not all of the ai are
zero, say a1 #= 0 (after relabelling the vi). Then V = span{u1, v2, v3, . . . , vn} as the reader can verify.
Hence, write u2 = b1u1 + c2v2 + c3v3 + · · ·+ cnvn. Then some ci #= 0 because {u1, u2} is independent;
so, as before, V = span{u1, u2, v3, . . . , vn}, again after possible relabelling of the vi. If m > n, this
procedure continues until all the vectors vi are replaced by the vectors u1, u2, . . . , un. In particular,
V = span{u1, u2, . . . , un}. But then un+1 is a linear combination of u1, u2, . . . , un contrary to the
independence of the ui. Hence, the assumption m > n cannot be valid, so m≤ n and the theorem is proved.

If V = span{v1, v2, . . . , vn}, and if {u1, u2, . . . , um} is an independent set in V , the above proof
shows not only that m ≤ n but also that m of the (spanning) vectors v1, v2, . . . , vn can be replaced by
the (independent) vectors u1, u2, . . . , um and the resulting set will still span V . In this form the result is
called the Steinitz Exchange Lemma.
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Definition 6.5 Basis of a Vector Space

As in Rn, a set {e1, e2, . . . , en} of vectors in a vector space V is called a basis of V if it satisfies
the following two conditions:

1. {e1, e2, . . . , en} is linearly independent

2. V = span{e1, e2, . . . , en}

Thus if a set of vectors {e1, e2, . . . , en} is a basis, then every vector in V can be written as a linear
combination of these vectors in a unique way (Theorem 6.3.1). But even more is true: Any two (finite)
bases of V contain the same number of vectors.

Theorem 6.3.3: Invariance Theorem

Let {e1, e2, . . . , en} and {f1, f2, . . . , fm} be two bases of a vector space V . Then n = m.

Proof. Because V = span{e1, e2, . . . , en} and {f1, f2, . . . , fm} is independent, it follows from Theo-
rem 6.3.2 that m≤ n. Similarly n≤ m, so n = m, as asserted.

Theorem 6.3.3 guarantees that no matter which basis of V is chosen it contains the same number of
vectors as any other basis. Hence there is no ambiguity about the following definition.

Definition 6.6 Dimension of a Vector Space

If {e1, e2, . . . , en} is a basis of the nonzero vector space V , the number n of vectors in the basis is
called the dimension of V , and we write

dim V = n

The zero vector space {0} is defined to have dimension 0:

dim{0}= 0

In our discussion to this point we have always assumed that a basis is nonempty and hence that the di-
mension of the space is at least 1. However, the zero space {0} has no basis (by Example 6.3.6) so our
insistence that dim{0} = 0 amounts to saying that the empty set of vectors is a basis of {0}. Thus the
statement that “the dimension of a vector space is the number of vectors in any basis” holds even for the
zero space.

We saw in Example 5.2.9 that dim (Rn) = n and, if e j denotes column j of In, that {e1, e2, . . . , en} is
a basis (called the standard basis). In Example 6.3.7 below, similar considerations apply to the space Mmn

of all m×n matrices; the verifications are left to the reader.

Example 6.3.7

The space Mmn has dimension mn, and one basis consists of all m×n matrices with exactly one
entry equal to 1 and all other entries equal to 0. We call this the standard basis of Mmn.
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Example 6.3.8

Show that dim Pn = n+1 and that {1, x, x2, . . . , xn} is a basis, called the standard basis of Pn.

Solution. Each polynomial p(x) = a0 +a1x+ · · ·+anxn in Pn is clearly a linear combination of
1, x, . . . , xn, so Pn = span{1, x, . . . , xn}. However, if a linear combination of these vectors
vanishes, a01+a1x+ · · ·+anxn = 0, then a0 = a1 = · · ·= an = 0 because x is an indeterminate. So
{1, x, . . . , xn} is linearly independent and hence is a basis containing n+1 vectors. Thus,
dim (Pn) = n+1.

Example 6.3.9

If v #= 0 is any nonzero vector in a vector space V , show that span{v}= Rv has dimension 1.

Solution. {v} clearly spans Rv, and it is linearly independent by Example 6.3.6. Hence {v} is a
basis of Rv, and so dim Rv = 1.

Example 6.3.10

Let A =

[
1 1
0 0

]
and consider the subspace

U = {X in M22 | AX = XA}

of M22. Show that dim U = 2 and find a basis of U .

Solution. It was shown in Example 6.2.3 that U is a subspace for any choice of the matrix A. In the

present case, if X =

[
x y

z w

]
is in U , the condition AX = XA gives z = 0 and x = y+w. Hence

each matrix X in U can be written

X =

[
y+w y

0 w

]
= y

[
1 1
0 0

]
+w

[
1 0
0 1

]

so U = span B where B =

{[
1 1
0 0

]
,
[

1 0
0 1

]}
. Moreover, the set B is linearly independent

(verify this), so it is a basis of U and dim U = 2.

Example 6.3.11

Show that the set V of all symmetric 2×2 matrices is a vector space, and find the dimension of V .

Solution. A matrix A is symmetric if AT = A. If A and B lie in V , then

(A+B)T = AT +BT = A+B and (kA)T = kAT = kA

using Theorem 2.1.2. Hence A+B and kA are also symmetric. As the 2×2 zero matrix is also in
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V , this shows that V is a vector space (being a subspace of M22). Now a matrix A is symmetric
when entries directly across the main diagonal are equal, so each 2×2 symmetric matrix has the
form [

a c

c b

]
= a

[
1 0
0 0

]
+b

[
0 0
0 1

]
+ c

[
0 1
1 0

]

Hence the set B =

{[
1 0
0 0

]
,
[

0 0
0 1

]
,
[

0 1
1 0

]}
spans V , and the reader can verify that B is

linearly independent. Thus B is a basis of V , so dim V = 3.

It is frequently convenient to alter a basis by multiplying each basis vector by a nonzero scalar. The
next example shows that this always produces another basis. The proof is left as Exercise 6.3.22.

Example 6.3.12

Let B = {v1, v2, . . . , vn} be nonzero vectors in a vector space V . Given nonzero scalars
a1, a2, . . . , an, write D = {a1v1, a2v2, . . . , anvn}. If B is independent or spans V , the same is true
of D. In particular, if B is a basis of V , so also is D.

Exercises for 6.3

Exercise 6.3.1 Show that each of the following sets of
vectors is independent.

a. {1+ x, 1− x, x+ x2} in P2

b. {x2, x+1, 1− x− x2} in P2

c.{[
1 1
0 0

]
,
[

1 0
1 0

]
,
[

0 0
1 −1

]
,
[

0 1
0 1

]}

in M22

d.{[
1 1
1 0

]
,
[

0 1
1 1

]
,
[

1 0
1 1

]
,
[

1 1
0 1

]}

in M22

Exercise 6.3.2 Which of the following subsets of V are
independent?

a. V = P2; {x2 +1, x+1, x}

b. V = P2; {x2− x+3, 2x2 + x+5, x2 +5x+1}

c. V = M22;
{[

1 1
0 1

]
,
[

1 0
1 1

]
,
[

1 0
0 1

]}

d. V = M22;{[
−1 0

0 −1

]
,
[

1 −1
−1 1

]
,
[

1 1
1 1

]
,
[

0 −1
−1 0

]}

e. V = F[1, 2];
{ 1

x
, 1

x2 , 1
x3

}

f. V = F[0, 1];
{

1
x2+x−6 , 1

x2−5x+6 , 1
x2−9

}

Exercise 6.3.3 Which of the following are independent
in F[0, 2π]?

a. {sin2 x, cos2 x}

b. {1, sin2 x, cos2 x}

c. {x, sin2 x, cos2 x}

Exercise 6.3.4 Find all values of a such that the follow-
ing are independent in R3.

a. {(1, −1, 0), (a, 1, 0), (0, 2, 3)}

b. {(2, a, 1), (1, 0, 1), (0, 1, 3)}

Exercise 6.3.5 Show that the following are bases of the
space V indicated.

a. {(1, 1, 0), (1, 0, 1), (0, 1, 1)}; V = R3
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b. {(−1, 1, 1), (1, −1, 1), (1, 1, −1)}; V =R3

c.
{[

1 0
0 1

]
,
[

0 1
1 0

]
,
[

1 1
0 1

]
,
[

1 0
0 0

]}
;

V = M22

d. {1+ x, x+ x2, x2 + x3, x3}; V = P3

Exercise 6.3.6 Exhibit a basis and calculate the dimen-
sion of each of the following subspaces of P2.

a. {a(1+ x)+b(x+ x2) | a and b in R}

b. {a+b(x+ x2) | a and b in R}

c. {p(x) | p(1) = 0}

d. {p(x) | p(x) = p(−x)}

Exercise 6.3.7 Exhibit a basis and calculate the dimen-
sion of each of the following subspaces of M22.

a. {A | AT =−A}

b.
{

A

∣∣∣∣ A

[
1 1
−1 0

]
=

[
1 1
−1 0

]
A

}

c.
{

A

∣∣∣∣ A

[
1 0
−1 0

]
=

[
0 0
0 0

]}

d.
{

A

∣∣∣∣ A

[
1 1
−1 0

]
=

[
0 1
−1 1

]
A

}

Exercise 6.3.8 Let A =

[
1 1
0 0

]
and define

U = {X | X ∈M22 and AX = X}.

a. Find a basis of U containing A.

b. Find a basis of U not containing A.

Exercise 6.3.9 Show that the set C of all complex num-
bers is a vector space with the usual operations, and find
its dimension.

Exercise 6.3.10

a. Let V denote the set of all 2× 2 matrices with
equal column sums. Show that V is a subspace
of M22, and compute dim V .

b. Repeat part (a) for 3×3 matrices.

c. Repeat part (a) for n×n matrices.

Exercise 6.3.11

a. Let V = {(x2+x+1)p(x) | p(x) in P2}. Show that
V is a subspace of P4 and find dim V . [Hint: If
f (x)g(x) = 0 in P, then f (x) = 0 or g(x) = 0.]

b. Repeat with V = {(x2 − x)p(x) | p(x) in P3}, a
subset of P5.

c. Generalize.

Exercise 6.3.12 In each case, either prove the assertion
or give an example showing that it is false.

a. Every set of four nonzero polynomials in P3 is a
basis.

b. P2 has a basis of polynomials f (x) such that
f (0) = 0.

c. P2 has a basis of polynomials f (x) such that
f (0) = 1.

d. Every basis of M22 contains a noninvertible ma-
trix.

e. No independent subset of M22 contains a matrix A

with A2 = 0.

f. If {u, v, w} is independent then, au+bv+cw= 0

for some a, b, c.

g. {u, v, w} is independent if au+ bv+ cw = 0 for
some a, b, c.

h. If {u, v} is independent, so is {u, u+v}.

i. If {u, v} is independent, so is {u, v, u+v}.

j. If {u, v, w} is independent, so is {u, v}.

k. If {u, v, w} is independent, so is {u+w, v+w}.

l. If {u, v, w} is independent, so is {u+v+w}.
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m. If u #= 0 and v #= 0 then {u, v} is dependent if and
only if one is a scalar multiple of the other.

n. If dim V = n, then no set of more than n vectors
can be independent.

o. If dim V = n, then no set of fewer than n vectors
can span V .

Exercise 6.3.13 Let A #= 0 and B #= 0 be n×n matrices,
and assume that A is symmetric and B is skew-symmetric
(that is, BT =−B). Show that {A, B} is independent.

Exercise 6.3.14 Show that every set of vectors contain-
ing a dependent set is again dependent.

Exercise 6.3.15 Show that every nonempty subset of an
independent set of vectors is again independent.

Exercise 6.3.16 Let f and g be functions on [a, b], and
assume that f (a) = 1 = g(b) and f (b) = 0 = g(a). Show
that { f , g} is independent in F[a, b].

Exercise 6.3.17 Let {A1, A2, . . . , Ak} be independent
in Mmn, and suppose that U and V are invertible ma-
trices of size m×m and n× n, respectively. Show that
{UA1V , UA2V , . . . , UAkV} is independent.

Exercise 6.3.18 Show that {v, w} is independent if and
only if neither v nor w is a scalar multiple of the other.

Exercise 6.3.19 Assume that {u, v} is independent in
a vector space V . Write u′ = au+ bv and v′ = cu+ dv,
where a, b, c, and d are numbers. Show that {u′, v′} is

independent if and only if the matrix
[

a c

b d

]
is invert-

ible. [Hint: Theorem 2.4.5.]

Exercise 6.3.20 If {v1, v2, . . . , vk} is independent and
w is not in span{v1, v2, . . . , vk}, show that:

a. {w, v1, v2, . . . , vk} is independent.

b. {v1 +w, v2 +w, . . . , vk +w} is independent.

Exercise 6.3.21 If {v1, v2, . . . , vk} is independent,
show that {v1, v1 + v2, . . . , v1 + v2 + · · ·+ vk} is also
independent.

Exercise 6.3.22 Prove Example 6.3.12.

Exercise 6.3.23 Let {u, v, w, z} be independent.
Which of the following are dependent?

a. {u−v, v−w, w−u}

b. {u+v, v+w, w+u}

c. {u−v, v−w, w− z, z−u}

d. {u+v, v+w, w+ z, z+u}

Exercise 6.3.24 Let U and W be subspaces of V with
bases {u1, u2, u3} and {w1, w2} respectively. If U

and W have only the zero vector in common, show that
{u1, u2, u3, w1, w2} is independent.

Exercise 6.3.25 Let {p, q} be independent polynomi-
als. Show that {p, q, pq} is independent if and only if
deg p≥ 1 and deg q≥ 1.

Exercise 6.3.26 If z is a complex number, show that
{z, z2} is independent if and only if z is not real.

Exercise 6.3.27 Let B = {A1, A2, . . . , An}⊆Mmn, and
write B′ = {AT

1 , AT
2 , . . . , AT

n }⊆Mnm. Show that:

a. B is independent if and only if B′ is independent.

b. B spans Mmn if and only if B′ spans Mnm.

Exercise 6.3.28 If V = F[a, b] as in Example 6.1.7,
show that the set of constant functions is a subspace of
dimension 1 ( f is constant if there is a number c such
that f (x) = c for all x).

Exercise 6.3.29

a. If U is an invertible n × n matrix and
{A1, A2, . . . , Amn} is a basis of Mmn, show that
{A1U , A2U , . . . , AmnU} is also a basis.

b. Show that part (a) fails if U is not invertible. [Hint:
Theorem 2.4.5.]

Exercise 6.3.30 Show that {(a, b), (a1, b1)} is a basis
of R2 if and only if {a+bx, a1 +b1x} is a basis of P1.

Exercise 6.3.31 Find the dimension of the subspace
span{1, sin2 θ , cos2θ} of F[0, 2π].

Exercise 6.3.32 Show that F[0, 1] is not finite dimen-
sional.

Exercise 6.3.33 If U and W are subspaces of V , define
their intersection U ∩W as follows:

U ∩W = {v | v is in both U and W}

a. Show that U ∩W is a subspace contained in U and
W .
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b. Show that U ∩W = {0} if and only if {u, w} is
independent for any nonzero vectors u in U and w

in W .

c. If B and D are bases of U and W , and if U ∩W =
{0}, show that B∪D = {v | v is in B or D} is in-
dependent.

Exercise 6.3.34 If U and W are vector spaces, let
V = {(u, w) | u in U and w in W}.

a. Show that V is a vector space if (u, w) +
(u1, w1) = (u + u1, w + w1) and a(u, w) =
(au, aw).

b. If dim U = m and dim W = n, show that
dim V = m+n.

c. If V1, . . . , Vm are vector spaces, let

V =V1× · · ·×Vm

= {(v1, . . . , vm) | vi ∈Vi for each i}

denote the space of n-tuples from the Vi with com-
ponentwise operations (see Exercise 6.1.17). If
dim Vi = ni for each i, show that dim V = n1 +
· · ·+nm.

Exercise 6.3.35 Let Dn denote the set of all functions f

from the set {1, 2, . . . , n} to R.

a. Show that Dn is a vector space with pointwise ad-
dition and scalar multiplication.

b. Show that {S1, S2, . . . , Sn} is a basis of Dn where,
for each k = 1, 2, . . . , n, the function Sk is defined
by Sk(k) = 1, whereas Sk( j) = 0 if j #= k.

Exercise 6.3.36 A polynomial p(x) is called even if
p(−x) = p(x) and odd if p(−x) = −p(x). Let En and
On denote the sets of even and odd polynomials in Pn.

a. Show that En is a subspace of Pn and find dim En.

b. Show that On is a subspace of Pn and find dim On.

Exercise 6.3.37 Let {v1, . . . , vn} be independent in a
vector space V , and let A be an n× n matrix. Define
u1, . . . , un by




u1
...

un



= A




v1
...

vn





(See Exercise 6.1.18.) Show that {u1, . . . , un} is inde-
pendent if and only if A is invertible.

6.4 Finite Dimensional Spaces

Up to this point, we have had no guarantee that an arbitrary vector space has a basis—and hence no
guarantee that one can speak at all of the dimension of V . However, Theorem 6.4.1 will show that any
space that is spanned by a finite set of vectors has a (finite) basis: The proof requires the following basic
lemma, of interest in itself, that gives a way to enlarge a given independent set of vectors.

Lemma 6.4.1: Independent Lemma

Let {v1, v2, . . . , vk} be an independent set of vectors in a vector space V . If u ∈V but5

u /∈ span{v1, v2, . . . , vk}, then {u, v1, v2, . . . , vk} is also independent.

Proof. Let tu+ t1v1 + t2v2 + · · ·+ tkvk = 0; we must show that all the coefficients are zero. First, t = 0
because, otherwise, u =− t1

t v1− t2
t v2− · · ·− tk

t vk is in span{v1, v2, . . . , vk}, contrary to our assumption.
Hence t = 0. But then t1v1 + t2v2 + · · ·+ tkvk = 0 so the rest of the ti are zero by the independence of
{v1, v2, . . . , vk}. This is what we wanted.

5If X is a set, we write a ∈ X to indicate that a is an element of the set X . If a is not an element of X , we write a /∈ X .
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0

u

v1

v2

span{v1, v2}
x

y

z

Note that the converse of Lemma 6.4.1 is also true: if
{u, v1, v2, . . . , vk} is independent, then u is not in
span{v1, v2, . . . , vk}.

As an illustration, suppose that {v1, v2} is inde-
pendent in R3. Then v1 and v2 are not parallel, so
span{v1, v2} is a plane through the origin (shaded in
the diagram). By Lemma 6.4.1, u is not in this plane if
and only if {u, v1, v2} is independent.

Definition 6.7 Finite Dimensional and Infinite Dimensional Vector Spaces

A vector space V is called finite dimensional if it is spanned by a finite set of vectors. Otherwise,
V is called infinite dimensional.

Thus the zero vector space {0} is finite dimensional because {0} is a spanning set.

Lemma 6.4.2

Let V be a finite dimensional vector space. If U is any subspace of V , then any independent subset
of U can be enlarged to a finite basis of U .

Proof. Suppose that I is an independent subset of U . If span I = U then I is already a basis of U . If
span I #=U , choose u1 ∈U such that u1 /∈ span I. Hence the set I∪{u1} is independent by Lemma 6.4.1.
If span (I ∪ {u1}) = U we are done; otherwise choose u2 ∈ U such that u2 /∈ span (I ∪ {u1}). Hence
I ∪ {u1, u2} is independent, and the process continues. We claim that a basis of U will be reached
eventually. Indeed, if no basis of U is ever reached, the process creates arbitrarily large independent sets
in V . But this is impossible by the fundamental theorem because V is finite dimensional and so is spanned
by a finite set of vectors.

Theorem 6.4.1

Let V be a finite dimensional vector space spanned by m vectors.

1. V has a finite basis, and dim V ≤ m.

2. Every independent set of vectors in V can be enlarged to a basis of V by adding vectors from
any fixed basis of V .

3. If U is a subspace of V , then

a. U is finite dimensional and dim U ≤ dim V .

b. If dim U = dim V then U =V .
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Proof.

1. If V = {0}, then V has an empty basis and dim V = 0 ≤ m. Otherwise, let v #= 0 be a vector in V .
Then {v} is independent, so (1) follows from Lemma 6.4.2 with U =V .

2. We refine the proof of Lemma 6.4.2. Fix a basis B of V and let I be an independent subset of V .
If span I = V then I is already a basis of V . If span I #= V , then B is not contained in I (because
B spans V ). Hence choose b1 ∈ B such that b1 /∈ span I. Hence the set I∪{b1} is independent by
Lemma 6.4.1. If span (I ∪ {b1}) = V we are done; otherwise a similar argument shows that (I ∪
{b1, b2}) is independent for some b2 ∈ B. Continue this process. As in the proof of Lemma 6.4.2,
a basis of V will be reached eventually.

3. a. This is clear if U = {0}. Otherwise, let u #= 0 in U . Then {u} can be enlarged to a finite basis
B of U by Lemma 6.4.2, proving that U is finite dimensional. But B is independent in V , so
dim U ≤ dim V by the fundamental theorem.

b. This is clear if U = {0} because V has a basis; otherwise, it follows from (2).

Theorem 6.4.1 shows that a vector space V is finite dimensional if and only if it has a finite basis (possibly
empty), and that every subspace of a finite dimensional space is again finite dimensional.

Example 6.4.1

Enlarge the independent set D =

{[
1 1
1 0

]
,
[

0 1
1 1

]
,
[

1 0
1 1

]}
to a basis of M22.

Solution. The standard basis of M22 is
{[

1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
,
[

0 0
0 1

]}
, so

including one of these in D will produce a basis by Theorem 6.4.1. In fact including any of these
matrices in D produces an independent set (verify), and hence a basis by Theorem 6.4.4. Of course

these vectors are not the only possibilities, for example, including
[

1 1
0 1

]
works as well.

Example 6.4.2

Find a basis of P3 containing the independent set {1+ x, 1+ x2}.

Solution. The standard basis of P3 is {1, x, x2, x3}, so including two of these vectors will do. If
we use 1 and x3, the result is {1, 1+ x, 1+ x2, x3}. This is independent because the polynomials
have distinct degrees (Example 6.3.4), and so is a basis by Theorem 6.4.1. Of course, including
{1, x} or {1, x2} would not work!

Example 6.4.3

Show that the space P of all polynomials is infinite dimensional.

Solution. For each n≥ 1, P has a subspace Pn of dimension n+1. Suppose P is finite dimensional,
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say dim P = m. Then dim Pn ≤ dim P by Theorem 6.4.1, that is n+1≤ m. This is impossible
since n is arbitrary, so P must be infinite dimensional.

The next example illustrates how (2) of Theorem 6.4.1 can be used.

Example 6.4.4

If c1, c2, . . . , ck are independent columns in Rn, show that they are the first k columns in some
invertible n×n matrix.

Solution. By Theorem 6.4.1, expand {c1, c2, . . . , ck} to a basis {c1, c2, . . . , ck, ck+1, . . . , cn} of
Rn. Then the matrix A =

[
c1 c2 . . . ck ck+1 . . . cn

]
with this basis as its columns is an

n×n matrix and it is invertible by Theorem 5.2.3.

Theorem 6.4.2

Let U and W be subspaces of the finite dimensional space V .

1. If U ⊆W , then dim U ≤ dim W .

2. If U ⊆W and dim U = dim W , then U =W .

Proof. Since W is finite dimensional, (1) follows by taking V = W in part (3) of Theorem 6.4.1. Now
assume dim U = dim W = n, and let B be a basis of U . Then B is an independent set in W . If U #= W ,
then span B #= W , so B can be extended to an independent set of n+ 1 vectors in W by Lemma 6.4.1.
This contradicts the fundamental theorem (Theorem 6.3.2) because W is spanned by dim W = n vectors.
Hence U =W , proving (2).

Theorem 6.4.2 is very useful. This was illustrated in Example 5.2.13 for R2 and R3; here is another
example.

Example 6.4.5

If a is a number, let W denote the subspace of all polynomials in Pn that have a as a root:

W = {p(x) | p(x) ∈ Pn and p(a) = 0}

Show that {(x−a), (x−a)2, . . . , (x−a)n} is a basis of W .

Solution. Observe first that (x−a), (x−a)2, . . . , (x−a)n are members of W , and that they are
independent because they have distinct degrees (Example 6.3.4). Write

U = span{(x−a), (x−a)2, . . . , (x−a)n}

Then we have U ⊆W ⊆ Pn, dim U = n, and dim Pn = n+1. Hence n≤ dim W ≤ n+1 by
Theorem 6.4.2. Since dim W is an integer, we must have dim W = n or dim W = n+1. But then
W =U or W = Pn, again by Theorem 6.4.2. Because W #= Pn, it follows that W =U , as required.
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A set of vectors is called dependent if it is not independent, that is if some nontrivial linear combina-
tion vanishes. The next result is a convenient test for dependence.

Lemma 6.4.3: Dependent Lemma

A set D = {v1, v2, . . . , vk} of vectors in a vector space V is dependent if and only if some vector
in D is a linear combination of the others.

Proof. Let v2 (say) be a linear combination of the rest: v2 = s1v1 + s3v3 + · · ·+ skvk. Then

s1v1 +(−1)v2 + s3v3 + · · ·+ skvk = 0

is a nontrivial linear combination that vanishes, so D is dependent. Conversely, if D is dependent, let
t1v1 + t2v2 + · · ·+ tkvk = 0 where some coefficient is nonzero. If (say) t2 #= 0, then v2 = − t1

t2
v1− t3

t2
v3−

· · ·− tk
t2

vk is a linear combination of the others.

Lemma 6.4.1 gives a way to enlarge independent sets to a basis; by contrast, Lemma 6.4.3 shows that
spanning sets can be cut down to a basis.

Theorem 6.4.3

Let V be a finite dimensional vector space. Any spanning set for V can be cut down (by deleting
vectors) to a basis of V .

Proof. Since V is finite dimensional, it has a finite spanning set S. Among all spanning sets contained in S,
choose S0 containing the smallest number of vectors. It suffices to show that S0 is independent (then S0 is a
basis, proving the theorem). Suppose, on the contrary, that S0 is not independent. Then, by Lemma 6.4.3,
some vector u ∈ S0 is a linear combination of the set S1 = S0 \{u} of vectors in S0 other than u. It follows
that span S0 = span S1, that is, V = span S1. But S1 has fewer elements than S0 so this contradicts the
choice of S0. Hence S0 is independent after all.

Note that, with Theorem 6.4.1, Theorem 6.4.3 completes the promised proof of Theorem 5.2.6 for the case
V = Rn.

Example 6.4.6

Find a basis of P3 in the spanning set S = {1, x+ x2, 2x−3x2, 1+3x−2x2, x3}.

Solution. Since dim P3 = 4, we must eliminate one polynomial from S. It cannot be x3 because
the span of the rest of S is contained in P2. But eliminating 1+3x−2x2 does leave a basis (verify).
Note that 1+3x−2x2 is the sum of the first three polynomials in S.

Theorems 6.4.1 and 6.4.3 have other useful consequences.

Theorem 6.4.4

Let V be a vector space with dim V = n, and suppose S is a set of exactly n vectors in V . Then S is
independent if and only if S spans V .
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Proof. Assume first that S is independent. By Theorem 6.4.1, S is contained in a basis B of V . Hence
|S|= n = |B| so, since S⊆ B, it follows that S = B. In particular S spans V .

Conversely, assume that S spans V , so S contains a basis B by Theorem 6.4.3. Again |S|= n = |B| so,
since S⊇ B, it follows that S = B. Hence S is independent.

One of independence or spanning is often easier to establish than the other when showing that a set of
vectors is a basis. For example if V = Rn it is easy to check whether a subset S of Rn is orthogonal (hence
independent) but checking spanning can be tedious. Here are three more examples.

Example 6.4.7

Consider the set S = {p0(x), p1(x), . . . , pn(x)} of polynomials in Pn. If deg pk(x) = k for each k,
show that S is a basis of Pn.

Solution. The set S is independent—the degrees are distinct—see Example 6.3.4. Hence S is a
basis of Pn by Theorem 6.4.4 because dim Pn = n+1.

Example 6.4.8

Let V denote the space of all symmetric 2×2 matrices. Find a basis of V consisting of invertible
matrices.

Solution. We know that dim V = 3 (Example 6.3.11), so what is needed is a set of three invertible,
symmetric matrices that (using Theorem 6.4.4) is either independent or spans V . The set{[

1 0
0 1

]
,
[

1 0
0 −1

]
,
[

0 1
1 0

]}
is independent (verify) and so is a basis of the required type.

Example 6.4.9

Let A be any n×n matrix. Show that there exist n2 +1 scalars a0, a1, a2, . . . , an2 not all zero,
such that

a0I +a1A+a2A2 + · · ·+an2An2
= 0

where I denotes the n×n identity matrix.

Solution. The space Mnn of all n×n matrices has dimension n2 by Example 6.3.7. Hence the
n2 +1 matrices I, A, A2, . . . , An2

cannot be independent by Theorem 6.4.4, so a nontrivial linear
combination vanishes. This is the desired conclusion.

The result in Example 6.4.9 can be written as f (A) = 0 where f (x) = a0 + a1x+ a2x2 + · · ·+ an2xn2
. In

other words, A satisfies a nonzero polynomial f (x) of degree at most n2. In fact we know that A satisfies
a nonzero polynomial of degree n (this is the Cayley-Hamilton theorem—see Theorem 8.7.10), but the
brevity of the solution in Example 6.4.6 is an indication of the power of these methods.

If U and W are subspaces of a vector space V , there are two related subspaces that are of interest, their
sum U +W and their intersection U ∩W , defined by

U +W = {u+w | u ∈U and w ∈W}
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U ∩W = {v ∈V | v ∈U and v ∈W}

It is routine to verify that these are indeed subspaces of V , that U ∩W is contained in both U and W , and
that U +W contains both U and W . We conclude this section with a useful fact about the dimensions of
these spaces. The proof is a good illustration of how the theorems in this section are used.

Theorem 6.4.5

Suppose that U and W are finite dimensional subspaces of a vector space V . Then U +W is finite
dimensional and

dim (U +W ) = dim U + dim W − dim (U ∩W ).

Proof. Since U∩W ⊆U , it has a finite basis, say {x1, . . . , xd}. Extend it to a basis {x1, . . . , xd , u1, . . . , um}
of U by Theorem 6.4.1. Similarly extend {x1, . . . , xd} to a basis {x1, . . . , xd , w1, . . . , wp} of W . Then

U +W = span{x1, . . . , xd , u1, . . . , um, w1, . . . , wp}

as the reader can verify, so U +W is finite dimensional. For the rest, it suffices to show that
{x1, . . . , xd , u1, . . . , um, w1, . . . , wp} is independent (verify). Suppose that

r1x1 + · · ·+ rdxd + s1u1 + · · ·+ smum + t1w1 + · · ·+ tpwp = 0 (6.1)

where the ri, s j, and tk are scalars. Then

r1x1 + · · ·+ rdxd + s1u1 + · · ·+ smum =−(t1w1 + · · ·+ tpwp)

is in U (left side) and also in W (right side), and so is in U ∩W . Hence (t1w1 + · · ·+ tpwp) is a linear
combination of {x1, . . . , xd}, so t1 = · · · = tp = 0, because {x1, . . . , xd , w1, . . . , wp} is independent.
Similarly, s1 = · · ·= sm = 0, so (6.1) becomes r1x1 + · · ·+ rdxd = 0. It follows that r1 = · · ·= rd = 0, as
required.

Theorem 6.4.5 is particularly interesting if U ∩W = {0}. Then there are no vectors xi in the above
proof, and the argument shows that if {u1, . . . , um} and {w1, . . . , wp} are bases of U and W respectively,
then {u1, . . . , um, w1, . . . , wp} is a basis of U + W . In this case U +W is said to be a direct sum (written
U⊕W ); we return to this in Chapter 9.

Exercises for 6.4

Exercise 6.4.1 In each case, find a basis for V that in-
cludes the vector v.

a. V =R3, v = (1, −1, 1)

b. V =R3, v = (0, 1, 1)

c. V = M22, v =

[
1 1
1 1

]

d. V = P2, v = x2− x+1

Exercise 6.4.2 In each case, find a basis for V among
the given vectors.

a. V = R3,
{(1, 1, −1), (2, 0, 1), (−1, 1, −2), (1, 2, 1)}

b. V = P2, {x2 +3, x+2, x2−2x−1, x2 + x}

Exercise 6.4.3 In each case, find a basis of V containing
v and w.
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a. V =R4, v = (1, −1, 1, −1), w = (0, 1, 0, 1)

b. V =R4, v = (0, 0, 1, 1), w = (1, 1, 1, 1)

c. V = M22, v =

[
1 0
0 1

]
, w =

[
0 1
1 0

]

d. V = P3, v = x2 +1, w = x2 + x

Exercise 6.4.4

a. If z is not a real number, show that {z, z2} is a basis
of the real vector space C of all complex numbers.

b. If z is neither real nor pure imaginary, show that
{z, z} is a basis of C.

Exercise 6.4.5 In each case use Theorem 6.4.4 to decide
if S is a basis of V .

a. V = M22;

S =

{[
1 1
1 1

]
,
[

0 1
1 1

]
,
[

0 0
1 1

]
,
[

0 0
0 1

]}

b. V = P3; S = {2x2, 1+ x, 3, 1+ x+ x2 + x3}

Exercise 6.4.6

a. Find a basis of M22 consisting of matrices with the
property that A2 = A.

b. Find a basis of P3 consisting of polynomials
whose coefficients sum to 4. What if they sum
to 0?

Exercise 6.4.7 If {u, v, w} is a basis of V , determine
which of the following are bases.

a. {u+v, u+w, v+w}

b. {2u+v+3w, 3u+v−w, u−4w}

c. {u, u+v+w}

d. {u, u+w, u−w, v+w}

Exercise 6.4.8

a. Can two vectors span R3? Can they be linearly
independent? Explain.

b. Can four vectors span R3? Can they be linearly
independent? Explain.

Exercise 6.4.9 Show that any nonzero vector in a finite
dimensional vector space is part of a basis.

Exercise 6.4.10 If A is a square matrix, show that
det A = 0 if and only if some row is a linear combina-
tion of the others.

Exercise 6.4.11 Let D, I, and X denote finite, nonempty
sets of vectors in a vector space V . Assume that D is de-
pendent and I is independent. In each case answer yes or
no, and defend your answer.

a. If X ⊇ D, must X be dependent?

b. If X ⊆ D, must X be dependent?

c. If X ⊇ I, must X be independent?

d. If X ⊆ I, must X be independent?

Exercise 6.4.12 If U and W are subspaces of V and
dim U = 2, show that either U ⊆W or dim (U ∩W)≤ 1.

Exercise 6.4.13 Let A be a nonzero 2× 2 matrix and
write U = {X in M22 | XA= AX}. Show that dim U ≥ 2.
[Hint: I and A are in U .]

Exercise 6.4.14 If U ⊆ R2 is a subspace, show that
U = {0}, U =R2, or U is a line through the origin.

Exercise 6.4.15 Given v1, v2, v3, . . . , vk, and v, let U =
span{v1, v2, . . . , vk} and W = span{v1, v2, . . . , vk, v}.
Show that either dim W = dim U or dim W = 1 +
dim U .

Exercise 6.4.16 Suppose U is a subspace of P1,
U #= {0}, and U #= P1. Show that either U = R or
U = R(a+ x) for some a in R.

Exercise 6.4.17 Let U be a subspace of V and assume
dim V = 4 and dim U = 2. Does every basis of V result
from adding (two) vectors to some basis of U? Defend
your answer.

Exercise 6.4.18 Let U and W be subspaces of a vector
space V .

a. If dim V = 3, dim U = dim W = 2, and U #= W ,
show that dim (U ∩W ) = 1.

b. Interpret (a.) geometrically if V =R3.
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Exercise 6.4.19 Let U ⊆ W be subspaces of V with
dim U = k and dim W = m, where k < m. If k < l < m,
show that a subspace X exists where U ⊆ X ⊆W and
dim X = l.

Exercise 6.4.20 Let B = {v1, . . . , vn} be a maximal in-
dependent set in a vector space V . That is, no set of more
than n vectors S is independent. Show that B is a basis of
V .

Exercise 6.4.21 Let B = {v1, . . . , vn} be a minimal

spanning set for a vector space V . That is, V cannot be
spanned by fewer than n vectors. Show that B is a basis
of V .

Exercise 6.4.22

a. Let p(x) and q(x) lie in P1 and suppose that
p(1) #= 0, q(2) #= 0, and p(2) = 0 = q(1). Show
that {p(x), q(x)} is a basis of P1. [Hint: If
rp(x)+ sq(x) = 0, evaluate at x = 1, x = 2.]

b. Let B = {p0(x), p1(x), . . . , pn(x)} be a set of
polynomials in Pn. Assume that there exist num-
bers a0, a1, . . . , an such that pi(ai) #= 0 for each i

but pi(aj) = 0 if i is different from j. Show that B

is a basis of Pn.

Exercise 6.4.23 Let V be the set of all infinite sequences
(a0, a1, a2, . . . ) of real numbers. Define addition and
scalar multiplication by

(a0, a1, . . . )+ (b0, b1, . . . ) = (a0 +b0, a1 +b1, . . . )

and
r(a0, a1, . . . ) = (ra0, ra1, . . .)

a. Show that V is a vector space.

b. Show that V is not finite dimensional.

c. [For those with some calculus.] Show that the set
of convergent sequences (that is, lim

n→∞
an exists) is

a subspace, also of infinite dimension.

Exercise 6.4.24 Let A be an n× n matrix of rank r. If
U = {X in Mnn | AX = 0}, show that dim U = n(n− r).
[Hint: Exercise 6.3.34.]

Exercise 6.4.25 Let U and W be subspaces of V .

a. Show that U +W is a subspace of V containing
both U and W .

b. Show that span{u, w}=Ru+Rw for any vectors
u and w.

c. Show that

span{u1, . . . , um, w1, . . . , wn}
= span{u1, . . . , um}+ span{w1, . . . , wn}

for any vectors ui in U and w j in W .

Exercise 6.4.26 If A and B are m× n matrices, show
that rank (A+B) ≤ rank A+ rank B. [Hint: If U and V

are the column spaces of A and B, respectively, show that
the column space of A+B is contained in U +V and that
dim (U +V )≤ dim U + dim V . (See Theorem 6.4.5.)]

6.5 An Application to Polynomials

The vector space of all polynomials of degree at most n is denoted Pn, and it was established in Section 6.3
that Pn has dimension n+1; in fact, {1, x, x2, . . . , xn} is a basis. More generally, any n+1 polynomials
of distinct degrees form a basis, by Theorem 6.4.4 (they are independent by Example 6.3.4). This proves

Theorem 6.5.1

Let p0(x), p1(x), p2(x), . . . , pn(x) be polynomials in Pn of degrees 0, 1, 2, . . . , n, respectively.
Then {p0(x), . . . , pn(x)} is a basis of Pn.

An immediate consequence is that {1, (x−a), (x−a)2, . . . , (x−a)n} is a basis of Pn for any number
a. Hence we have the following:
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Corollary 6.5.1

If a is any number, every polynomial f (x) of degree at most n has an expansion in powers of
(x−a):

f (x) = a0 +a1(x−a)+a2(x−a)2 + · · ·+an(x−a)n (6.2)

If f (x) is evaluated at x = a, then equation (6.2) becomes

f (x) = a0 +a1(a−a)+ · · ·+an(a−a)n = a0

Hence a0 = f (a), and equation (6.2) can be written f (x) = f (a)+(x−a)g(x), where g(x) is a polynomial
of degree n−1 (this assumes that n≥ 1). If it happens that f (a) = 0, then it is clear that f (x) has the form
f (x) = (x−a)g(x). Conversely, every such polynomial certainly satisfies f (a) = 0, and we obtain:

Corollary 6.5.2

Let f (x) be a polynomial of degree n≥ 1 and let a be any number. Then:
Remainder Theorem

1. f (x) = f (a)+(x−a)g(x) for some polynomial g(x) of degree n−1.

Factor Theorem

2. f (a) = 0 if and only if f (x) = (x−a)g(x) for some polynomial g(x).

The polynomial g(x) can be computed easily by using “long division” to divide f (x) by (x− a)—see
Appendix D.

All the coefficients in the expansion (6.2) of f (x) in powers of (x−a) can be determined in terms of the
derivatives of f (x).6 These will be familiar to students of calculus. Let f (n)(x) denote the nth derivative
of the polynomial f (x), and write f (0)(x) = f (x). Then, if

f (x) = a0 +a1(x−a)+a2(x−a)2 + · · ·+an(x−a)n

it is clear that a0 = f (a) = f (0)(a). Differentiation gives

f (1)(x) = a1 +2a2(x−a)+3a3(x−a)2 + · · ·+nan(x−a)n−1

and substituting x = a yields a1 = f (1)(a). This continues to give a2 =
f (2)(a)

2! , a3 =
f (3)(a)

3! , . . . , ak =
f (k)(a)

k! ,
where k! is defined as k! = k(k−1) · · ·2 ·1. Hence we obtain the following:

Corollary 6.5.3: Taylor’s Theorem

If f (x) is a polynomial of degree n, then

f (x) = f (a)+ f (1)(a)
1! (x−a)+ f (2)(a)

2! (x−a)2 + · · ·+ f (n)(a)
n! (x−a)n

6The discussion of Taylor’s theorem can be omitted with no loss of continuity.
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Example 6.5.1

Expand f (x) = 5x3 +10x+2 as a polynomial in powers of x−1.

Solution. The derivatives are f (1)(x) = 15x2 +10, f (2)(x) = 30x, and f (3)(x) = 30. Hence the
Taylor expansion is

f (x) = f (1)+ f (1)(1)
1! (x−1)+ f (2)(1)

2! (x−1)2 + f (3)(1)
3! (x−1)3

= 17+25(x−1)+15(x−1)2+5(x−1)3

Taylor’s theorem is useful in that it provides a formula for the coefficients in the expansion. It is dealt
with in calculus texts and will not be pursued here.

Theorem 6.5.1 produces bases of Pn consisting of polynomials of distinct degrees. A different criterion
is involved in the next theorem.

Theorem 6.5.2

Let f0(x), f1(x), . . . , fn(x) be nonzero polynomials in Pn. Assume that numbers a0, a1, . . . , an

exist such that

fi(ai) #= 0 for each i

fi(a j) = 0 if i #= j

Then

1. { f0(x), . . . , fn(x)} is a basis of Pn.

2. If f (x) is any polynomial in Pn, its expansion as a linear combination of these basis vectors is

f (x) = f (a0)
f0(a0)

f0(x)+
f (a1)
f1(a1)

f1(x)+ · · ·+ f (an)
fn(an)

fn(x)

Proof.

1. It suffices (by Theorem 6.4.4) to show that { f0(x), . . . , fn(x)} is linearly independent (because
dim Pn = n+1). Suppose that

r0 f0(x)+ r1 f1(x)+ · · ·+ rn fn(x) = 0, ri ∈ R

Because fi(a0)= 0 for all i> 0, taking x= a0 gives r0 f0(a0)= 0. But then r0 = 0 because f0(a0) #= 0.
The proof that ri = 0 for i > 0 is analogous.

2. By (1), f (x) = r0 f0(x) + · · ·+ rn fn(x) for some numbers ri. Once again, evaluating at a0 gives
f (a0) = r0 f0(a0), so r0 = f (a0)/ f0(a0). Similarly, ri = f (ai)/ fi(ai) for each i.
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Example 6.5.2

Show that {x2− x, x2−2x, x2−3x+2} is a basis of P2.

Solution. Write f0(x) = x2− x = x(x−1), f1(x) = x2−2x = x(x−2), and
f2(x) = x2−3x+2 = (x−1)(x−2). Then the conditions of Theorem 6.5.2 are satisfied with
a0 = 2, a1 = 1, and a2 = 0.

We investigate one natural choice of the polynomials fi(x) in Theorem 6.5.2. To illustrate, let a0, a1,
and a2 be distinct numbers and write

f0(x) =
(x−a1)(x−a2)
(a0−a1)(a0−a2)

f1(x) =
(x−a0)(x−a2)
(a1−a0)(a1−a2)

f2(x) =
(x−a0)(x−a1)
(a2−a0)(a2−a1)

Then f0(a0) = f1(a1) = f2(a2) = 1, and fi(a j) = 0 for i #= j. Hence Theorem 6.5.2 applies, and because
fi(ai) = 1 for each i, the formula for expanding any polynomial is simplified.

In fact, this can be generalized with no extra effort. If a0, a1, . . . , an are distinct numbers, define the
Lagrange polynomials δ0(x), δ1(x), . . . , δn(x) relative to these numbers as follows:

δk(x) =
∏i#=k(x−ai)

∏i#=k(ak−ai)
k = 0, 1, 2, . . . , n

Here the numerator is the product of all the terms (x−a0), (x−a1), . . . , (x−an) with (x−ak) omitted,
and a similar remark applies to the denominator. If n = 2, these are just the polynomials in the preceding
paragraph. For another example, if n = 3, the polynomial δ1(x) takes the form

δ1(x) =
(x−a0)(x−a2)(x−a3)

(a1−a0)(a1−a2)(a1−a3)

In the general case, it is clear that δi(ai) = 1 for each i and that δi(a j) = 0 if i #= j. Hence Theorem 6.5.2
specializes as Theorem 6.5.3.

Theorem 6.5.3: Lagrange Interpolation Expansion

Let a0, a1, . . . , an be distinct numbers. The corresponding set

{δ0(x), δ1(x), . . . , δn(x)}

of Lagrange polynomials is a basis of Pn, and any polynomial f (x) in Pn has the following unique
expansion as a linear combination of these polynomials.

f (x) = f (a0)δ0(x)+ f (a1)δ1(x)+ · · ·+ f (an)δn(x)

Example 6.5.3

Find the Lagrange interpolation expansion for f (x) = x2−2x+1 relative to a0 =−1, a1 = 0, and
a2 = 1.
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Solution. The Lagrange polynomials are

δ0 =
(x−0)(x−1)

(−1−0)(−1−1) =
1
2(x

2− x)

δ1 =
(x+1)(x−1)
(0+1)(0−1) =−(x

2−1)

δ2 =
(x+1)(x−0)
(1+1)(1−0) =

1
2(x

2 + x)

Because f (−1) = 4, f (0) = 1, and f (1) = 0, the expansion is

f (x) = 2(x2− x)− (x2−1)

The Lagrange interpolation expansion gives an easy proof of the following important fact.

Theorem 6.5.4

Let f (x) be a polynomial in Pn, and let a0, a1, . . . , an denote distinct numbers. If f (ai) = 0 for all
i, then f (x) is the zero polynomial (that is, all coefficients are zero).

Proof. All the coefficients in the Lagrange expansion of f (x) are zero.

Exercises for 6.5

Exercise 6.5.1 If polynomials f (x) and g(x) satisfy
f (a) = g(a), show that f (x)− g(x) = (x− a)h(x) for
some polynomial h(x).

Exercises 6.5.2, 6.5.3, 6.5.4, and 6.5.5 require poly-
nomial differentiation.
Exercise 6.5.2 Expand each of the following as a poly-
nomial in powers of x−1.

a. f (x) = x3−2x2 + x−1

b. f (x) = x3 + x+1

c. f (x) = x4

d. f (x) = x3−3x2 +3x

Exercise 6.5.3 Prove Taylor’s theorem for polynomi-
als.

Exercise 6.5.4 Use Taylor’s theorem to derive the bino-

mial theorem:

(1+ x)n =

(
n

0

)
+

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

n

)
xn

Here the binomial coefficients
(

n
r

)
are defined by

(
n

r

)
= n!

r!(n−r)!

where n! = n(n−1) · · ·2 ·1 if n≥ 1 and 0! = 1.

Exercise 6.5.5 Let f (x) be a polynomial of degree n.
Show that, given any polynomial g(x) in Pn, there exist
numbers b0, b1, . . . , bn such that

g(x) = b0 f (x)+b1 f (1)(x)+ · · ·+bn f (n)(x)

where f (k)(x) denotes the kth derivative of f (x).

Exercise 6.5.6 Use Theorem 6.5.2 to show that the fol-
lowing are bases of P2.

a. {x2−2x, x2 +2x, x2−4}

b. {x2−3x+2, x2−4x+3, x2−5x+6}

Exercise 6.5.7 Find the Lagrange interpolation expan-
sion of f (x) relative to a0 = 1, a1 = 2, and a2 = 3 if:

f (x) = x2 +1a. f (x) = x2 + x+1b.
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Exercise 6.5.8 Let a0, a1, . . . , an be distinct numbers.
If f (x) and g(x) in Pn satisfy f (ai) = g(ai) for all i, show
that f (x) = g(x). [Hint: See Theorem 6.5.4.]

Exercise 6.5.9 Let a0, a1, . . . , an be distinct numbers.
If f (x)∈ Pn+1 satisfies f (ai) = 0 for each i= 0, 1, . . . , n,
show that f (x) = r(x−a0)(x−a1) · · · (x−an) for some r

in R. [Hint: r is the coefficient of xn+1 in f (x). Consider
f (x)− r(x−a0) · · · (x−an) and use Theorem 6.5.4.]

Exercise 6.5.10 Let a and b denote distinct numbers.

a. Show that {(x−a), (x−b)} is a basis of P1.

b. Show that {(x−a)2, (x−a)(x−b), (x−b)2} is a
basis of P2.

c. Show that {(x−a)n, (x−a)n−1(x−b),
. . . , (x− a)(x− b)n−1, (x− b)n} is a basis of Pn.
[Hint: If a linear combination vanishes, evaluate
at x = a and x = b. Then reduce to the case n− 2

by using the fact that if p(x)q(x) = 0 in P, then
either p(x) = 0 or q(x) = 0.]

Exercise 6.5.11 Let a and b be two distinct numbers.
Assume that n≥ 2 and let

Un = { f (x) in Pn | f (a) = 0 = f (b)}.

a. Show that

Un = {(x−a)(x−b)p(x) | p(x) in Pn−2}

b. Show that dim Un = n−1.

[Hint: If p(x)q(x) = 0 in P, then either p(x) = 0,
or q(x) = 0.]

c. Show {(x−a)n−1(x−b), (x−a)n−2(x−b)2,
. . . , (x−a)2(x−b)n−2, (x−a)(x−b)n−1} is a ba-
sis of Un. [Hint: Exercise 6.5.10.]

6.6 An Application to Differential Equations

Call a function f : R→ R differentiable if it can be differentiated as many times as we want. If f

is a differentiable function, the nth derivative f (n) of f is the result of differentiating n times. Thus
f (0) = f , f (1) = f ′, f (2) = f (1)′, . . . and, in general, f (n+1) = f (n)′ for each n≥ 0. For small values of n

these are often written as f , f ′, f ′′, f ′′′, . . . .
If a, b, and c are numbers, the differential equations

f ′′+a f ′+b f = 0 or f ′′′+a f ′′+b f ′+ c f = 0

are said to be of second-order and third-order, respectively. In general, an equation

f (n) +an−1 f (n−1) +an−2 f (n−2) + · · ·+a2 f (2) +a1 f (1) +a0 f (0) = 0, ai in R (6.3)

is called a differential equation of order n. In this section we investigate the set of solutions to (6.3) and,
if n is 1 or 2, find explicit solutions. Of course an acquaintance with calculus is required.

Let f and g be solutions to (6.3). Then f +g is also a solution because ( f +g)(k) = f (k) +g(k) for all
k, and a f is a solution for any a in R because (a f )(k) = a f (k). It follows that the set of solutions to (6.3) is
a vector space, and we ask for the dimension of this space.

We have already dealt with the simplest case (see Theorem 3.5.1):

Theorem 6.6.1

The set of solutions of the first-order differential equation f ′+a f = 0 is a one-dimensional vector
space and {e−ax} is a basis.

There is a far-reaching generalization of Theorem 6.6.1 that will be proved in Theorem 7.4.1.
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Theorem 6.6.2

The set of solutions to the nth order equation (6.3) has dimension n.

Remark

Every differential equation of order n can be converted into a system of n linear first-order equations (see
Exercises 3.5.6 and 3.5.7). In the case that the matrix of this system is diagonalizable, this approach
provides a proof of Theorem 6.6.2. But if the matrix is not diagonalizable, Theorem 7.4.1 is required.

Theorem 6.6.1 suggests that we look for solutions to (6.3) of the form eλx for some number λ . This is
a good idea. If we write f (x) = eλx, it is easy to verify that f (k)(x) = λ keλx for each k≥ 0, so substituting
f in (6.3) gives

(λ n +an−1λ n−1 +an−2λ n−2 + · · ·+a2λ 2 +a1λ 1 +a0)e
λx = 0

Since eλx #= 0 for all x, this shows that eλx is a solution of (6.3) if and only if λ is a root of the characteristic

polynomial c(x), defined to be

c(x) = xn +an−1xn−1 +an−2xn−2 + · · ·+a2x2 +a1x+a0

This proves Theorem 6.6.3.

Theorem 6.6.3

If λ is real, the function eλx is a solution of (6.3) if and only if λ is a root of the characteristic
polynomial c(x).

Example 6.6.1

Find a basis of the space U of solutions of f ′′′ −2 f ′′ − f ′ −2 f = 0.

Solution. The characteristic polynomial is x3−2x2− x−1 = (x−1)(x+1)(x−2), with roots
λ1 = 1, λ2 =−1, and λ3 = 2. Hence ex, e−x, and e2x are all in U . Moreover they are independent
(by Lemma 6.6.1 below) so, since dim (U) = 3 by Theorem 6.6.2, {ex, e−x, e2x} is a basis of U .

Lemma 6.6.1

If λ1, λ2, . . . , λk are distinct, then {eλ1x, eλ2x, . . . , eλkx} is linearly independent.

Proof. If r1eλ1x + r2eλ2x + · · ·+ rkeλkx = 0 for all x, then r1 + r2e(λ2−λ1)x + · · ·+ rke(λk−λ1)x = 0; that is,
r2e(λ2−λ1)x + · · ·+ rke(λk−λ1)x is a constant. Since the λi are distinct, this forces r2 = · · ·= rk = 0, whence
r1 = 0 also. This is what we wanted.
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Theorem 6.6.4

Let U denote the space of solutions to the second-order equation

f ′′+a f ′+b f = 0

where a and b are real constants. Assume that the characteristic polynomial x2 +ax+b has two
real roots λ and µ . Then

1. If λ #= µ , then {eλx, eµx} is a basis of U .

2. If λ = µ , then {eλx, xeλx} is a basis of U .

Proof. Since dim (U) = 2 by Theorem 6.6.2, (1) follows by Lemma 6.6.1, and (2) follows because the set
{eλx, xeλx} is independent (Exercise 6.6.3).

Example 6.6.2

Find the solution of f ′′+4 f ′+4 f = 0 that satisfies the boundary conditions f (0) = 1,
f (1) =−1.

Solution. The characteristic polynomial is x2 +4x+4 = (x+2)2, so −2 is a double root. Hence
{e−2x, xe−2x} is a basis for the space of solutions, and the general solution takes the form
f (x) = ce−2x +dxe−2x. Applying the boundary conditions gives 1 = f (0) = c and
−1 = f (1) = (c+d)e−2. Hence c = 1 and d =−(1+ e2), so the required solution is

f (x) = e−2x− (1+ e2)xe−2x

One other question remains: What happens if the roots of the characteristic polynomial are not real?
To answer this, we must first state precisely what eλx means when λ is not real. If q is a real number,
define

eiq = cosq+ isinq

where i2 = −1. Then the relationship eiqeiq1 = ei(q+q1) holds for all real q and q1, as is easily verified. If
λ = p+ iq, where p and q are real numbers, we define

eλ = epeiq = ep(cosq+ isinq)

Then it is a routine exercise to show that

1. eλ eµ = eλ+µ

2. eλ = 1 if and only if λ = 0

3. (eλx)′ = λeλx

These easily imply that f (x) = eλx is a solution to f ′′+a f ′+b f = 0 if λ is a (possibly complex) root of
the characteristic polynomial x2 +ax+b. Now write λ = p+ iq so that

f (x) = eλx = epx cos(qx)+ iepx sin(qx)
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For convenience, denote the real and imaginary parts of f (x) as u(x) = epx cos(qx) and v(x) = epx sin(qx).
Then the fact that f (x) satisfies the differential equation gives

0 = f ′′+a f ′+b f = (u′′+au′+bu)+ i(v′′+av′+bv)

Equating real and imaginary parts shows that u(x) and v(x) are both solutions to the differential equation.
This proves part of Theorem 6.6.5.

Theorem 6.6.5

Let U denote the space of solutions of the second-order differential equation

f ′′+a f ′+b f = 0

where a and b are real. Suppose λ is a nonreal root of the characteristic polynomial x2 +ax+b. If
λ = p+ iq, where p and q are real, then

{epx cos(qx), epx sin(qx)}

is a basis of U .

Proof. The foregoing discussion shows that these functions lie in U . Because dim U = 2 by Theo-
rem 6.6.2, it suffices to show that they are linearly independent. But if

repx cos(qx)+ sepx sin(qx) = 0

for all x, then r cos(qx)+ ssin(qx) = 0 for all x (because epx #= 0). Taking x = 0 gives r = 0, and taking
x = π

2q gives s = 0 (q #= 0 because λ is not real). This is what we wanted.

Example 6.6.3

Find the solution f (x) to f ′′ −2 f ′+2 f = 0 that satisfies f (0) = 2 and f (π
2 ) = 0.

Solution. The characteristic polynomial x2−2x+2 has roots 1+ i and 1− i. Taking λ = 1+ i

(quite arbitrarily) gives p = q = 1 in the notation of Theorem 6.6.5, so {ex cosx, ex sinx} is a basis
for the space of solutions. The general solution is thus f (x) = ex(r cosx+ ssinx). The boundary
conditions yield 2 = f (0) = r and 0 = f (π

2 ) = eπ/2s. Thus r = 2 and s = 0, and the required
solution is f (x) = 2ex cosx.

The following theorem is an important special case of Theorem 6.6.5.

Theorem 6.6.6

If q #= 0 is a real number, the space of solutions to the differential equation f ′′+q2 f = 0 has basis
{cos(qx), sin(qx)}.

Proof. The characteristic polynomial x2 +q2 has roots qi and −qi, so Theorem 6.6.5 applies with p = 0.
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In many situations, the displacement s(t) of some object at time t turns out to have an oscillating form
s(t) = csin(at)+d cos(at). These are called simple harmonic motions. An example follows.

Example 6.6.4

d(t)

A weight is attached to an extension spring (see diagram). If it is pulled
from the equilibrium position and released, it is observed to oscillate up
and down. Let d(t) denote the distance of the weight below the equilibrium
position t seconds later. It is known (Hooke’s law) that the acceleration
d′′(t) of the weight is proportional to the displacement d(t) and in the opposite
direction. That is,

d′′(t) =−kd(t)

where k > 0 is called the spring constant. Find d(t) if the maximum extension
is 10 cm below the equilibrium position and find the period of the oscillation

(time taken for the weight to make a full oscillation).

Solution. It follows from Theorem 6.6.6 (with q2 = k) that

d(t) = r sin(
√

k t)+ scos(
√

k t)

where r and s are constants. The condition d(0) = 0 gives s = 0, so d(t) = r sin(
√

k t). Now the
maximum value of the function sinx is 1 (when x = π

2 ), so r = 10 (when t = π
2
√

k
). Hence

d(t) = 10sin(
√

k t)

Finally, the weight goes through a full oscillation as
√

k t increases from 0 to 2π . The time taken is
t = 2π√

k
, the period of the oscillation.

Exercises for 6.6

Exercise 6.6.1 Find a solution f to each of the follow-
ing differential equations satisfying the given boundary
conditions.

a. f ′ −3 f = 0; f (1) = 2

b. f ′+ f = 0; f (1) = 1

c. f ′′+2 f ′ −15 f = 0; f (1) = f (0) = 0

d. f ′′+ f ′ −6 f = 0; f (0) = 0, f (1) = 1

e. f ′′ −2 f ′+ f = 0; f (1) = f (0) = 1

f. f ′′ −4 f ′+4 f = 0; f (0) = 2, f (−1) = 0

g. f ′′ −3a f ′+2a2 f = 0; a #= 0; f (0) = 0,
f (1) = 1− ea

h. f ′′ −a2 f = 0, a #= 0; f (0) = 1, f (1) = 0

i. f ′′ −2 f ′+5 f = 0; f (0) = 1, f (π
4 ) = 0

j. f ′′+4 f ′+5 f = 0; f (0) = 0, f (π
2 ) = 1

Exercise 6.6.2 If the characteristic polynomial of
f ′′+ a f ′+ b f = 0 has real roots, show that f = 0 is the
only solution satisfying f (0) = 0 = f (1).

Exercise 6.6.3 Complete the proof of Theorem 6.6.2.
[Hint: If λ is a double root of x2 + ax + b, show that
a =−2λ and b = λ 2. Hence xeλx is a solution.]
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Exercise 6.6.4

a. Given the equation f ′+a f = b, (a #= 0), make the
substitution f (x) = g(x) + b/a and obtain a dif-
ferential equation for g. Then derive the general
solution for f ′+a f = b.

b. Find the general solution to f ′+ f = 2.

Exercise 6.6.5 Consider the differential equation
f ′+ a f ′+ b f = g, where g is some fixed function. As-
sume that f0 is one solution of this equation.

a. Show that the general solution is c f1 + d f2 + f0,
where c and d are constants and { f1, f2} is any
basis for the solutions to f ′′+a f ′+b f = 0.

b. Find a solution to f ′′+ f ′ − 6 f = 2x3 − x2 − 2x.
[Hint: Try f (x) = −1

3 x3.]

Exercise 6.6.6 A radioactive element decays at a rate
proportional to the amount present. Suppose an initial
mass of 10 grams decays to 8 grams in 3 hours.

a. Find the mass t hours later.

b. Find the half-life of the element—the time it takes
to decay to half its mass.

Exercise 6.6.7 The population N(t) of a region at time
t increases at a rate proportional to the population. If the
population doubles in 5 years and is 3 million initially,
find N(t).

Exercise 6.6.8 Consider a spring, as in Example 6.6.4.
If the period of the oscillation is 30 seconds, find the
spring constant k.

Exercise 6.6.9 As a pendulum swings (see the diagram),
let t measure the time since it was vertical. The angle
θ = θ(t) from the vertical can be shown to satisfy the
equation θ ′′ + kθ = 0, provided that θ is small. If the
maximal angle is θ = 0.05 radians, find θ(t) in terms of
k. If the period is 0.5 seconds, find k. [Assume that θ = 0
when t = 0.]

θ

Supplementary Exercises for Chapter 6

Exercise 6.1 (Requires calculus) Let V denote the space
of all functions f :R→R for which the derivatives f ′ and
f ′′ exist. Show that f1, f2, and f3 in V are linearly inde-
pendent provided that their wronskian w(x) is nonzero
for some x, where

w(x) = det





f1(x) f2(x) f3(x)

f ′1(x) f ′2(x) f ′3(x)

f ′′1 (x) f ′′2 (x) f ′′3 (x)





Exercise 6.2 Let {v1, v2, . . . , vn} be a basis of Rn (writ-
ten as columns), and let A be an n×n matrix.

a. If A is invertible, show that {Av1, Av2, . . . , Avn}
is a basis of Rn.

b. If {Av1, Av2, . . . , Avn} is a basis of Rn, show that
A is invertible.

Exercise 6.3 If A is an m× n matrix, show that A has
rank m if and only if col A contains every column of Im.

Exercise 6.4 Show that null A = null (AT A) for any real
matrix A.

Exercise 6.5 Let A be an m×n matrix of rank r. Show
that dim (null A) = n− r (Theorem 5.4.3) as follows.
Choose a basis {x1, . . . , xk} of null A and extend it
to a basis {x1, . . . , xk, z1, . . . , zm} of Rn. Show that
{Az1, . . . , Azm} is a basis of col A.


