Textbook Sec 2.1

Exercise 2.1.3 Let
$$A = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -1 & 2 \\ 0 & 1 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 3 \\ -1 & 0 \\ 1 & 4 \end{bmatrix}$, and $E = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.

Compute the following (where possible).

a.
$$3A - 2B$$

c.
$$3E^T$$

$$d. B+D$$

e.
$$4A^T - 3C$$

f.
$$(A+C)^T$$

g.
$$2B - 3E$$

h.
$$A-D$$

i.
$$(B-2E)^T$$

I Link to problems are

Canvas > Home > week 3 board work

I Go to jamboard link

(See Zoom Chat or

Canvas > Home > week 3 board work

Write / type with mouse/finger on the slide labeled

by your breakout room number.

Solution manual:

- 3. b. $5C 5\begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 15 & -5 \\ 10 & 0 \end{bmatrix}$
 - d. B+D is not defined as B is 2×3 while D is 3×2 .
 - f. $(A+C)^T = \begin{bmatrix} 2+3 & 1-1 \\ 0+2 & -1+0 \end{bmatrix}^T = \begin{bmatrix} 5 & 0 \\ 2 & -1 \end{bmatrix}^T = \begin{bmatrix} 5 & 2 \\ 0 & -1 \end{bmatrix}$
 - h. A D is not defined as A is 2×2 while D is 3×2 .

Textbook Sec 2.1

Exercise 2.1.8 Simplify the following expressions where *A*, *B*, and *C* are matrices.

Solution manual:

8. b.
$$5[3(A-B+2C)-2(3C-B)-A]+2[3(3A-B+C)+2(B-2A)-2C]$$

= $5[3A-3B+6C-6C+2B-A]+2[9A-3B+3C+2B-4A-2C]$
= $5[2A-B]+2[5A-B+C]$
= $10A-5B+10A-2B+2C$
= $20A-7B+2C$

Textbook Section 2.2

Exercise 2.2.2 In each case find a vector equation that is equivalent to the given system of equations. (Do not solve the equation.)

a.
$$x_1 - x_2 + 3x_3 = 5$$

 $-3x_1 + x_2 + x_3 = -6$
 $5x_1 - 8x_2 = 9$

$$5x_1 - 8x_2 = 9$$
b.
$$x_1 - 2x_2 - x_3 + x_4 = 5$$

$$-x_1 + x_3 - 2x_4 = -3$$

$$2x_1 - 2x_2 + 7x_3 = 8$$

 $3x_1 - 4x_2 + 9x_3 - 2x_4 = 12$

A vector equation

$$\times_{1}\begin{bmatrix}1\\-3\\5\end{bmatrix} + \times_{2}\begin{bmatrix}-1\\1\\-8\end{bmatrix} + \times_{3}\begin{bmatrix}3\\1\\0\end{bmatrix} = \begin{bmatrix}5\\-6\\9\end{bmatrix}$$

A vector equation is ...

a linear Combination of Some vectors

Solution manual:

2. b.
$$x_1 \begin{bmatrix} 1 \\ -1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 0 \\ -2 \\ -4 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 1 \\ 7 \\ 9 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ -2 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \\ 8 \\ 12 \end{bmatrix}$$

Exercise 2.2.10 In each case either show that the statement is true, or give an example showing that it is false.

- a. $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ is a linear combination of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
- b. If Ax has a zero entry, then A has a row of zeros.
- c. If $A\mathbf{x} = \mathbf{0}$ where $\mathbf{x} \neq \mathbf{0}$, then A = 0.
- d. Every linear combination of vectors in \mathbb{R}^n can be written in the form Ax.
- e. If $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$ in terms of its columns, and if $\mathbf{b} = 3\mathbf{a}_1 - 2\mathbf{a}_2$, then the system $A\mathbf{x} = \mathbf{b}$ has a so-

If $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$ in terms of its columns, and if the system $A\mathbf{x} = \mathbf{b}$ has a solution, then $\mathbf{b} = s\mathbf{a}_1 + t\mathbf{a}_2$ for some s, t.

- g. If *A* is $m \times n$ and m < n, then $A\mathbf{x} = \mathbf{b}$ has a solution for every column b.
- h. If $A\mathbf{x} = \mathbf{b}$ has a solution for some column **b**, then it has a solution for every column b.
- i. If \mathbf{x}_1 and \mathbf{x}_2 are solutions to $A\mathbf{x} = \mathbf{b}$, then $\mathbf{x}_1 \mathbf{x}_2$ is a solution to $A\mathbf{x} = \mathbf{0}$.
- j. Let $A = [\begin{array}{cc} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{array}]$ in terms of its columns. If $\mathbf{a}_3 = s\mathbf{a}_1 + t\mathbf{a}_2$, then $A\mathbf{x} = \mathbf{0}$, where $\mathbf{x} = \begin{bmatrix} s \\ t \\ -1 \end{bmatrix}$.

10. b. False. $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has a zero entry, but $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ has no zero row.

d. True. The linear combination $x_1\mathbf{a}_1 + \dots + x_n\mathbf{a}_n$ equals $A\mathbf{x}$ where, by Theorem 2.2.1, $A = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix}$ is the matrix with these vectors \mathbf{a}_i as its columns.

Solution manual:

2.2. Matrix-Vector Multiplication ■ 17

False. If $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 2 & 0 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ then $A\mathbf{x} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$, and this is not a linear combination of $\begin{bmatrix} 1\\2 \end{bmatrix}$ and $\begin{bmatrix} 1\\2 \end{bmatrix}$ because it is not a scalar multiple of $\begin{bmatrix} 1\\2 \end{bmatrix}$.

(h) False. If $A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix}$, there is a solution $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ for $\mathbf{b} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. But there is no solution for $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Indeed, if $\begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ then x - y + z = 1 and -x + y - z = 0.