Textbook Sec 2.1
Exercise 2.1.3 Let $A=\left[\begin{array}{rr}2 & 1 \\ 0 & -1\end{array}\right]$,
$B=\left[\begin{array}{rrr}3 & -1 & 2 \\ 0 & 1 & 4\end{array}\right], C=\left[\begin{array}{rr}3 & -1 \\ 2 & 0\end{array}\right]$,
$D=\left[\begin{array}{rr}1 & 3 \\ -1 & 0 \\ 1 & 4\end{array}\right]$, and $E=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.

Compute the following (where possible).
$\begin{array}{ll}\text { a. } 3 A-2 B & \text { b. } 5 C \\ \text { c. } 3 E^{T} & \text { d. } B+D \\ \text { e. } 4 A^{T}-3 C & \text { f. }(A+C)^{T} \\ \text { g. } 2 B-3 E & \text { h. } A-D \\ \text { i. }(B-2 E)^{T} & \end{array}$

Link to problems are
on Zoom chat or

Canvas> Home> week 3 board work \square Go to jamboard link
(see Zoom chat or

Solution manual:
(3.) b. $5 C-5\left[\begin{array}{rr}3 & -1 \\ 2 & 0\end{array}\right]=\left[\begin{array}{rr}15 & -5 \\ 10 & 0\end{array}\right]$
d. $B+D$ is not defined as B is 2×3 while D is 3×2.
f. $(A+C)^{T}=\left[\begin{array}{cc}2+3 & 1-1 \\ 0+2 & -1+0\end{array}\right]^{T}=\left[\begin{array}{rr}5 & 0 \\ 2 & -1\end{array}\right]^{T}=\left[\begin{array}{rr}5 & 2 \\ 0 & -1\end{array}\right]$
h. $A-D$ is not defined as A is 2×2 while D is 3×2.

Textbook Sec 2.1

Exercise 2.1.8 Simplify the following expressions where A, B, and C are matrices.

Solution manual:
8. b. $5[3(A-B+2 C)-2(3 C-B)-A]+2[3(3 A-B+C)+2(B-2 A)-2 C]$ $=5[3 A-3 B+6 C-6 C+2 B-A]+2[9 A-3 B+3 C+2 B-4 A-2 C]$

$$
=5[2 A-B]+2[5 A-B+C]
$$

$$
=10 A-5 B+10 A-2 B+2 C
$$

$$
=20 A-7 B+2 C
$$

Textbook Section 2.2
Exercise 2.2.2 In each case find a vector equation that is equivalent to the given system of equations. (Do not solve the equation.)
a. $x_{1}-x_{2}+3 x_{3}=5$ A system
$-3 x_{1}+x_{2}+x_{3}=-6$
$5 x_{1}-8 x_{2}=9$ three equations

$$
\begin{aligned}
& \text { A vector equation } \\
& x_{1}\left[\begin{array}{c}
1 \\
-3 \\
5
\end{array}\right]+x_{2}\left[\begin{array}{c}
-1 \\
1 \\
-8
\end{array}\right]+x_{3}\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
5 \\
-6 \\
9
\end{array}\right]
\end{aligned}
$$

b. $x_{1}-2 x_{2}-x_{3}+x_{4}=5$
$-x_{1}+x_{3}-2 x_{4}=-3$
$2 x_{1}-2 x_{2}+7 x_{3}=8$
$3 x_{1}-4 x_{2}+9 x_{3}-2 x_{4}=12$

A vector equation is ...
a linear combination of some vectors

Solution manual:
(2.) b. $x_{1}\left[\begin{array}{r}1 \\ -1 \\ 2 \\ 3\end{array}\right]+x_{2}\left[\begin{array}{r}-2 \\ 0 \\ -2 \\ -4\end{array}\right]+x_{3}\left[\begin{array}{r}-1 \\ 1 \\ 7 \\ 9\end{array}\right]+x_{4}\left[\begin{array}{r}1 \\ -2 \\ 0 \\ -2\end{array}\right]=\left[\begin{array}{r}5 \\ -3 \\ 8 \\ 12\end{array}\right]$

Exercise 2.2.10 In each case either show that the statement is true, or give an example showing that it is false.
a. $\left[\begin{array}{l}3 \\ 2\end{array}\right]$ is a linear combination of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
b. If $A \mathbf{x}$ has a zero entry, then A has a row of zeros.
c. If $A \mathbf{x}=\mathbf{0}$ where $\mathbf{x} \neq \mathbf{0}$, then $A=0$.
d. Every linear combination of vectors in \mathbb{R}^{n} can be written in the form $A \mathbf{x}$.
e. If $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ in terms of its columns, and if $\mathbf{b}=3 \mathbf{a}_{1}-2 \mathbf{a}_{2}$, then the system $A \mathbf{x}=\mathbf{b}$ has a solution.

If $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ in terms of its columns, and if the system $A \mathbf{x}=\mathbf{b}$ has a solution, then $\mathbf{b}=s \mathbf{a}_{1}+t \mathbf{a}_{2}$ for some s, t.
g. If A is $m \times n$ and $m<n$, then $A \mathbf{x}=\mathbf{b}$ has a solution for every column \mathbf{b}.
h. If $A \mathbf{x}=\mathbf{b}$ has a solution for some column \mathbf{b}, then it has a solution for every column \mathbf{b}.
i. If \mathbf{x}_{1} and \mathbf{x}_{2} are solutions to $A \mathbf{x}=\mathbf{b}$, then $\mathbf{x}_{1}-\mathbf{x}_{2}$ is a solution to $A \mathbf{x}=\mathbf{0}$.
j. Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ in terms of its columns. If

$$
\mathbf{a}_{3}=s \mathbf{a}_{1}+t \mathbf{a}_{2} \text {, then } A \mathbf{x}=\mathbf{0} \text {, where } \mathbf{x}=\left[\begin{array}{c}
s \\
t \\
-1
\end{array}\right] .
$$

10. b. False. $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{r}2 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ has a zero entry, but $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ has no zero row.
d. True. The linear combination $x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}$ equals $A \mathbf{x}$ where, by Theorem 2.2.1, $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$ is the matrix with these vectors \mathbf{a}_{i} as its columns.

Solution manual:

False. If $A=\left[\begin{array}{rrr}1 & 1 & -1 \\ 2 & 2 & 0\end{array}\right]$ and $\mathbf{x}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$ then $A \mathbf{x}=\left[\begin{array}{l}1 \\ 4\end{array}\right]$, and this is not a linear combination of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ because it is not a scalar multiple of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
h. False. If $A=\left[\begin{array}{rrr}1 & -1 & 1 \\ -1 & 1 & -1\end{array}\right]$, there is a solution $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ for $\mathbf{b}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. But there is no solution for $\mathbf{b}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Indeed, if $\left[\begin{array}{rrr}1 & -1 & 1 \\ -1 & 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ then $x-y+z=1$ and $-x+y-z=0$. This is impossible.

