Exercise 2.2.10 | In each case either show that the state-
ment is true, or give an example showing that it is false.
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If Ax has a zero entry, then A has a row of zeros)

{ ; w is a linear combination of [ (1) ] and {
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If Ax = 0 where x # 0, then A = 0.

Every linear combination of vectors in R” can be
written in the form Ax.

. IfA=[a; a, aj ]interms ofits columns, and

if b = 3a; — 2ay,, then the system AXx = b has a so-
lution.
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2.2. Matrix-Vector Multiplication = 17

False. 1A= 1]

of [ N ] and [ ) } because it is not a scalar multiple of [ N ]

False. 1A= [ | 7]

B

forb= [} ] decait [} ]}

This is impossible.

o } and x = [ o } then Ax = [ i ], and this is not a linear combination

:
1 ] there is a sotution [ z} forb = [ § ]. Butthere is no solution
.
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6 Question (2D transformation)

0 -1
LetM.—[1 O]

a. Compute the product M [ﬂ .

b. Compute the following vectors:
0 —1]1(2| _ -3
1 03] 2

c. Plot the points v1 = (2,3), v2 = (4,6), v3 = (6,9) in Cartesian coordinates. On the same graph, plot the points

corresponding to the vectors computed in part (b).

Vi = (2.3
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d. Describe what the matrix M does to the points vy, vs,v3. Hint: Use phrases like “rotation by ... degrees” or
“reflection across ... line”.
Ko’baf?om [Qld o olc@f‘ce,s

Clockwite / counter clock wise ?

R

e. What does the matrix M2 do to the points v1, ve,v3? M= MM
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Clockote / C,ou,ni'g,rc/(oc(q Dise ?
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7 Question (2D transformation)

(This question is a 2D preview of a future topic.)

0o -1
Let B := [_1 0}

(a) Compute the product B B] :

(b) Compute the following vectors:
0o -1][2] _ 0 —1][4] _ 0o -1][6] _
-1 0] (3] -1 0] [6] -1 019

(c) Plot the points v1 = (2,3), v2 = (4,6), v3 = (6,9) in Cartesian coordinates. On the same graph, plot the points
corresponding to the vectors computed in part (b)

(d) Describe what thern/at»ej@does to the points vy, v2,v3. Hint: Use phrases like “rotation by ... degrees” or
line”.

“reflection across ., g?ecj{‘?r e eq uation ‘Q(‘ Hats [T e (
v

(e) What does the matrix B? do to the points vy, v, v3?




