Exercise 2.2.10 In each case either show that the statement is true, or give an example showing that it is false.
a. $\left[\begin{array}{l}3 \\ 2\end{array}\right]$ is a linear combination of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$. b. If $A \mathbf{x}$ has a zero entry, then A has a row of zeros.
c. If $A \mathbf{x}=\mathbf{0}$ where $\mathbf{x} \neq \mathbf{0}$, then $A=0$.
d. Every linear combination of vectors in \mathbb{R}^{n} can be written in the form $A \mathbf{x}$.
e. If $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ in terms of its columns, and if $\mathbf{b}=3 \mathbf{a}_{1}-2 \mathbf{a}_{2}$, then the system $A \mathbf{x}=\mathbf{b}$ has a solotion.

If $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ in terms of its columns, and if the system $A \mathbf{x}=\mathbf{b}$ has a solution, then $\mathbf{b}=s \mathbf{a}_{1}+t \mathbf{a}_{2}$ for some s, t.
g. If A is $m \times n$ and $m<n$, then $A \mathbf{x}=\mathbf{b}$ has a solution for every column \mathbf{b}.
h. If $A \mathbf{x}=\mathbf{b}$ has a solution for some column \mathbf{b}, then it has a solution for every column \mathbf{b}.
i. If \mathbf{x}_{1} and \mathbf{x}_{2} are solutions to $A \mathbf{x}=\mathbf{b}$, then $\mathbf{x}_{1}-\mathbf{x}_{2}$ is a solution to $A \mathbf{x}=\mathbf{0}$.
j. Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ in terms of its columns. If

$$
\mathbf{a}_{3}=s \mathbf{a}_{1}+t \mathbf{a}_{2} \text {, then } A \mathbf{x}=\mathbf{0}, \text { where } \mathbf{x}=\left[\begin{array}{c}
s \\
t \\
-1
\end{array}\right]
$$

Statement:
If A is a matrix and \vec{x} is a vector and $A \vec{x}$ has a zero entry,
THEN A has a row of zeros.
False:
Counterexample 1: $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right], \vec{X}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$

$$
A \vec{x}=\left[\begin{array}{l}
1.2+2 .-1 \\
2.2+-1.4
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

even though A has no row of zeros.
Counterexample 2 :

$$
\begin{aligned}
& \text { Counterexample 2: } \\
& \text { Try } A \text { w/ dim } 3 \times 2 \\
& A=\left[\begin{array}{l|l}
1 & 2 \\
\hline 0 & 1 \\
\hline 1 & 0
\end{array}\right] \quad \text { want } \vec{x} \text { so that } \\
& \left.A \quad \vec{x}=\begin{array}{c}
0 \times 1 \\
8 \\
3 \times 2
\end{array}\right]
\end{aligned}
$$

Want \vec{x} such that

$$
\left.\begin{array}{rl}
1 x_{1}+2 x_{2} & =0 \\
1 x_{2} & =0 \\
1 x_{1} & =0
\end{array}\right\} \quad \begin{aligned}
& \text { A system of } \\
& \text { linear equations }
\end{aligned}
$$

Write the augmented matrix

$$
\left[\begin{array}{ll|l}
1 & 2 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

$$
\begin{array}{r}
\text { Row reduce: } \\
\left.R_{1}\left[\begin{array}{cc|c}
1 & 2 & 0 \\
R_{2} & 1 & 0 \\
0 & -2 & 0
\end{array}\right] \rightarrow R_{2}\left[\begin{array}{ll|l}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right] \rightarrow \begin{array}{l}
R_{1} \\
R_{1}+R_{3}
\end{array}\right] \\
\left.R_{2}\left[\begin{array}{cc|c}
1 & 2 & 0 \\
0 & 1 & 0 \\
-R_{2}+R_{3} & 0 & 0
\end{array}\right] \begin{array}{c}
x_{1}+2 x_{2}=0 \\
\begin{array}{l}
x_{2}=0 \\
x_{1}=0
\end{array} \\
\text { Our counter example } 2: \\
\text { our }
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1 \\
1 & 0
\end{array}\right], \vec{x}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{array}
$$

Solution manual:

(10) (b.) False. $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{c}2 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ has a zero entry, but $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ has no zero row.
(d). True. The linear combination $x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{\text {}}$ equals $A \mathbf{x}$ where, by Theorem 2.2.1,
$A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$ is the matrix with these vectors \mathbf{a}_{i} as its columns.
2.2. Matrix-Vector Multiplication = 17

False. If $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & 2 & 0\end{array}\right]$ and $\mathbf{x}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$ then $A \mathbf{x}=\left[\begin{array}{l}1 \\ 4\end{array}\right]$, and this is not a linear combination of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ because it is not a scalar multiple of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
h. False. If $A=\left[\begin{array}{rrr}1 & -1 & 1 \\ -1 & 1 & -1\end{array}\right]$, there is a solution $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ for $\mathbf{b}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. But there is no solution for $\mathbf{b}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Indeed, if $\left[\begin{array}{rrr}1 & -1 & 1 \\ -1 & 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ then $x-y+z=1$ and $-x+y-z=0$.
This is impossible. This is impossible.

Exercise 2.2.10 In each case either show that the statement is true, or give an example showing that it is false.
a. $\left[\begin{array}{l}3 \\ 2\end{array}\right]$ is a linear combination of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
b. If $A \mathbf{x}$ has a zero entry, then A has a row of zeros.
c. If $A \mathbf{x}=\mathbf{0}$ where $\mathbf{x} \neq \mathbf{0}$, then $A=0$.
d. Every linear combination of vectors in \mathbb{R}^{n} can be written in the form $A \mathbf{x}$.
e. If $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ in terms of its columns, and if $\mathbf{b}=3 \mathbf{a}_{1}-2 \mathbf{a}_{2}$, then the system $A \mathbf{x}=\mathbf{b}$ has a solotion.

If $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ in terms of its columns, and if the system $A \mathbf{x}=\mathbf{b}$ has a solution, then $\mathbf{b}=s \mathbf{a}_{1}+t \mathbf{a}_{2}$ for some s, t.
g. If A is $m \times n$ and $m<n$, then $A \mathbf{x}=\mathbf{b}$ has a solution for every column \mathbf{b}.
h. If $A \mathbf{x}=\mathbf{b}$ has a solution for some column \mathbf{b}, then it has a solution for every column \mathbf{b}.
i. If \mathbf{x}_{1} and \mathbf{x}_{2} are solutions to $A \mathbf{x}=\mathbf{b}$, then $\mathbf{x}_{1}-\mathbf{x}_{2}$ is a solution to $A \mathbf{x}=\mathbf{0}$.
j. Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ in terms of its columns. If $\mathbf{a}_{3}=s \mathbf{a}_{1}+t \mathbf{a}_{2}$, then $A \mathbf{x}=\mathbf{0}$, where $\mathbf{x}=\left[\begin{array}{c}s \\ t \\ -1\end{array}\right]$.

Statement: Every linear combination

$$
r_{1} v_{1}+r_{2} v_{2}+r_{3} v_{3}+\ldots+r_{k} v_{k}
$$

of $v_{1}, v_{2}, \ldots, v_{k}$
can be written in the form
$[$ matrix $]\left[\begin{array}{l}a \\ \text { vector }\end{array}\right]$.

$$
\begin{array}{r}
\text { E.g. } 2\left[\begin{array}{l}
1 \\
3
\end{array}\right]+4\left[\begin{array}{l}
5 \\
6
\end{array}\right]+7\left[\begin{array}{l}
8 \\
9
\end{array}\right] \text { is a linear } \\
\text { combination of }\left[\begin{array}{l}
1 \\
3
\end{array}\right],\left[\begin{array}{l}
5 \\
6
\end{array}\right],\left[\begin{array}{l}
8 \\
9
\end{array}\right] . \\
\text { Can } 1 \text { write this as } \underbrace{A}_{\text {matrix }} \underbrace{\vec{x}}_{\text {vector }} \text { ? }
\end{array}
$$

$$
2\left[\begin{array}{l}
1 \\
3
\end{array}\right]+4\left[\begin{array}{l}
5 \\
6
\end{array}\right]+7\left[\begin{array}{l}
8 \\
9
\end{array}\right]=\left[\begin{array}{l}
2.1+4.5+7.8 \\
2.3+4.6+7.9
\end{array}\right]
$$

$$
2 \times 1 \text { vector }
$$

$$
\left[\begin{array}{l}
2.1+4.5+7.8 \\
2.3+4.6+7.9
\end{array}\right] \stackrel{?}{=} A \vec{x}
$$

$$
=\left[\begin{array}{lll}
1 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]\left[\begin{array}{l}
2 \\
4 \\
7
\end{array}\right]
$$

$$
r_{1} v_{1}+r_{2} v_{2}+r_{3} v_{3}+\ldots+r_{k} v_{k}=\left[\begin{array}{cccc}
1 & 1 & & 1 \\
v_{1} & v_{2} & \ldots & v_{k} \\
1 & 1 & & 1
\end{array}\right]\left[\begin{array}{c}
r_{1} \\
r_{2} \\
r_{3} \\
\vdots \\
v_{k}
\end{array}\right]
$$

6 Question (2D transformation)

Let $M:=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
a. Compute the product $M\left[\begin{array}{l}x \\ y\end{array}\right]$.

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{r}
-y \\
x
\end{array}\right]
$$

b. Compute the following vectors:
$\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}2 \\ 3\end{array}\right]=\square\left[\begin{array}{c}-3 \\ 2\end{array}\right] \quad\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}4 \\ 6\end{array}\right]=\square \quad\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}6 \\ 9\end{array}\right]=\square$
c. Plot the points $v_{1}=(2,3), v_{2}=(4,6), v_{3}=(6,9)$ in Cartesian coordinates. On the same graph, plot the points corresponding to the vectors computed in part (b).

d. Describe what the matrix M does to the points v_{1}, v_{2}, v_{3}. Hint: Use phrases like "rotation by \ldots degrees" or "reflection across ... line".

> Rotation by degrees

Clockwise / counterclockwise?
e. What does the matrix M^{2} do to the points $v_{1}, v_{2}, v_{3} ? \quad M^{2}=M M=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{l}? \\ ? ? ?\end{array}\right]$

Plot
$M^{2} v_{1,}$
Rotation by degrees
Clockwise / counterclock wise?

7 Question (2D transformation)

(This question is a 2 D preview of a future topic.)
Let $B:=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$.
(a) Compute the product $B\left[\begin{array}{l}x \\ y\end{array}\right]$.
\square
(b) Compute the following vectors:
$\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]\left[\begin{array}{l}2 \\ 3\end{array}\right]=\square \quad\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]\left[\begin{array}{l}4 \\ 6\end{array}\right]=\square \quad\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]\left[\begin{array}{l}6 \\ 9\end{array}\right]=\square$
(c) Plot the points $v_{1}=(2,3), v_{2}=(4,6), v_{3}=(6,9)$ in Cartesian coordinates. On the same graph, plot the points corresponding to the vectors computed in part (b)
(d) Describe what the matrix B does to the points v_{1}, v_{2}, v_{3}. Hint: Use phrases like "rotation by \ldots degrees" or "reflection across
 the equation for this line?
(e) What does the matrix B^{2} do to the points v_{1}, v_{2}, v_{3} ?
\square

