Exercise 2.2.10 In each case either show that the statement is true, or give an example showing that it is false.

a.
$$\begin{bmatrix} 3\\2 \end{bmatrix}$$
 is a linear combination of $\begin{bmatrix} 1\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\1 \end{bmatrix}$.

c. If $A\mathbf{x} = \mathbf{0}$ where $\mathbf{x} \neq \mathbf{0}$, then A = 0.

- d. Every linear combination of vectors in \mathbb{R}^n can be written in the form $A\mathbf{x}$.
- e. If $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$ in terms of its columns, and if $\mathbf{b} = 3\mathbf{a}_1 2\mathbf{a}_2$, then the system $A\mathbf{x} = \mathbf{b}$ has a solution.

If $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$ in terms of its columns, and if the system $A\mathbf{x} = \mathbf{b}$ has a solution, then $\mathbf{b} = s\mathbf{a}_1 + t\mathbf{a}_2$ for some *s*, *t*.

g. If *A* is $m \times n$ and m < n, then $A\mathbf{x} = \mathbf{b}$ has a solution for every column \mathbf{b} .

b If $A\mathbf{x} = \mathbf{b}$ has a solution for some column **b**, then it has a solution for every column **b**.

i. If \mathbf{x}_1 and \mathbf{x}_2 are solutions to $A\mathbf{x} = \mathbf{b}$, then $\mathbf{x}_1 - \mathbf{x}_2$ is a solution to $A\mathbf{x} = \mathbf{0}$.

j. Let
$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$$
 in terms of its columns. If
 $\mathbf{a}_3 = s\mathbf{a}_1 + t\mathbf{a}_2$, then $A\mathbf{x} = \mathbf{0}$, where $\mathbf{x} = \begin{bmatrix} s \\ t \\ -1 \end{bmatrix}$.

Statement: If A is a matrix and \$ is a vector and $A\vec{x}$ has a zero entry, THEN A has a row of zero zeros False: Counterexample 1: $A = \begin{bmatrix} 12\\ 24 \end{bmatrix}$, $\overline{X} = \begin{bmatrix} 2\\ -1 \end{bmatrix}$ $A\hat{x} = \begin{bmatrix} 1 & 2 + 2 & -1 \\ 2 & 2 + -1 & 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ even though A has no row of zeros Want & such that $\begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} |X_1 + 2X_2| \\ 0 + X_2 \\ X_1 + 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $\begin{array}{c} | \times_1 + 2 \times_2 = 0 \\ | \times_2 = 0 \\ | \times_1 = 0 \end{array} \right) \quad A \quad sustem \quad of \\ linear \quad equations$ Write the augmented matrix Row reduce: $\begin{array}{c|c} R_{1} & 1 & 2 & 0 \\ R_{2} & 0 & 1 & 0 \\ -1 & R_{1} & + & R_{3} & 0 & -2 & 0 \end{array} \xrightarrow{R_{1}} \begin{array}{c} R_{1} & 2 & 0 \\ R_{2} & 0 & 1 & 0 \\ -\frac{1}{2} & R_{3} & 0 & 1 & 0 \end{array} \xrightarrow{R_{1}} \begin{array}{c} R_{1} & 1 & 2 & 0 \\ R_{2} & 0 & 1 & 0 \\ R_{2} & R_{3} & 0 & 0 \end{array} \xrightarrow{R_{1}} \begin{array}{c} R_{1} & 1 & 2 & 0 \\ R_{2} & 0 & 1 & 0 \\ R_{2} & R_{3} & 0 & 0 \end{array} \xrightarrow{R_{1}} \begin{array}{c} R_{1} & 1 & 2 & 0 \\ R_{2} & 0 & 1 & 0 \\ R_{2} & R_{3} & 0 & 0 \end{array} \xrightarrow{R_{1}} \begin{array}{c} R_{2} & R_{3} \\ R_{3} & R_{3} & R_{3} \end{array} \xrightarrow{R_{1}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} \end{array} \xrightarrow{R_{1}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} \end{array} \xrightarrow{R_{1}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} \end{array} \xrightarrow{R_{1}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \\ R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} \\ R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} \\ R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} & R_{3} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} \\ \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3} \end{array} \xrightarrow{R_{3}} \end{array} \xrightarrow{R_{3}} \begin{array}{c} R_{3}$ Our counterexample 2: $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \hat{X} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 $A\bar{x} = \begin{bmatrix} 0\\0 \end{bmatrix}$ even though

A has no row of zeros

10 b False. $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has a zero entry, but $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ has no zero row.

Solution manual:

 $\vec{a} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix}$ is the matrix with these vectors \mathbf{a}_i as its control of the form 2.2.1, $\vec{a} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix}$ is the matrix with these vectors \mathbf{a}_i as its columns.

2.2. Matrix-Vector Multiplication = 17

False. If $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 2 & 0 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ then $A\mathbf{x} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$, and this is not a linear combination of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ because it is not a scalar multiple of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

b. False. If $A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix}$, there is a solution $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ for $\mathbf{b} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. But there is no solution for $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. But there is no solution for $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Indeed, if $\begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ then x - y + z = 1 and -x + y - z = 0. This is impossible.

Exercise 2.2.10 In each case either show that the statement is true, or give an example showing that it is false.

a. $\begin{bmatrix} 3\\2 \end{bmatrix}$ is a linear combination of $\begin{bmatrix} 1\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\1 \end{bmatrix}$.

b. If Ax has a zero entry, then A has a row of zeros.

c. If $A\mathbf{x} = \mathbf{0}$ where $\mathbf{x} \neq \mathbf{0}$, then A = 0.

d. Every linear combination of vectors in \mathbb{R}^n can be written in the form Ax.

True e. If $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$ in terms of its columns, and if $\mathbf{b} = \mathbf{3}\mathbf{a}_1 - 2\mathbf{a}_2$, then the system $A\mathbf{x} = \mathbf{b}$ has a solution.

> If $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$ in terms of its columns, and if the system $A\mathbf{x} = \mathbf{b}$ has a solution, then $\mathbf{b} = s\mathbf{a}_1 + t\mathbf{a}_2$ for some s, t.

- g. If *A* is $m \times n$ and m < n, then $A\mathbf{x} = \mathbf{b}$ has a solution for every column b.
- h. If $A\mathbf{x} = \mathbf{b}$ has a solution for some column **b**, then it has a solution for every column **b**.
- i. If \mathbf{x}_1 and \mathbf{x}_2 are solutions to $A\mathbf{x} = \mathbf{b}$, then $\mathbf{x}_1 \mathbf{x}_2$ is a solution to $A\mathbf{x} = \mathbf{0}$.
- j. Let $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$ in terms of its columns. If
 - $\mathbf{a}_3 = s\mathbf{a}_1 + t\mathbf{a}_2$, then $A\mathbf{x} = \mathbf{0}$, where $\mathbf{x} = \begin{bmatrix} s \\ t \\ -1 \end{bmatrix}$.

case either show that the state-
sample showing that it is false.
The mention of
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
try, then A has a row of zeros.
 $\neq 0$, then $A = 0$.
ination of vectors in \mathbb{R}^n can be
Ax.
 a_3] in terms of its columns, and
ten the system $A\mathbf{x} = \mathbf{b}$ has a so-
 a_3] in terms of its columns, then
 $\mathbf{x} = \mathbf{c}$.
 $(matrix) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 4\begin{bmatrix} 5 \\ 4 \end{bmatrix} + 7\begin{bmatrix} 8 \\ 7 \end{bmatrix}$ is a linear
 $(matrix) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.
 $Can = \mathbf{c}$ with the state-
 $(matrix) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.
 $Can = \mathbf{c}$ with the state-
 $(matrix) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.
 $Can = \mathbf{c}$ with the state-
 $(matrix) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.
 $(matrix) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.
 $(matrix) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.
 $(matrix) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 4 \end{bmatrix}, \begin{bmatrix} 7 \\ 4 \end{bmatrix}, \begin{bmatrix} 7 \\ 4 \end{bmatrix}, \begin{bmatrix} 7 \\ 4 \end{bmatrix}$.
 $(matrix) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 7 \\ 4 \end{bmatrix}, \begin{bmatrix}$

6 Question (2D transformation)

Let
$$M := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

a. Compute the product $M\begin{bmatrix} x\\ y \end{bmatrix}$.

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \times \\ y \end{bmatrix} = \begin{bmatrix} -y \\ \times \end{bmatrix}$$

b. Compute the following vectors:

$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 6 \end{bmatrix} =$	$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ 9 \end{bmatrix} =$	
--	--	--	--

c. Plot the points $v_1 = (2,3)$, $v_2 = (4,6)$, $v_3 = (6,9)$ in Cartesian coordinates. On the same graph, plot the points corresponding to the vectors computed in part (b).

d. Describe what the matrix M does to the points v_1, v_2, v_3 . Hint: Use phrases like "rotation by ... degrees" or "reflection across ... line".

7 Question (2D transformation)

(This question is a 2D preview of a future topic.)

Let
$$B := \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$
.

(a) Compute the product $B\begin{bmatrix} x\\ y \end{bmatrix}$.

(b) Compute the following vectors:

$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} =$	$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 6 \end{bmatrix} =$	$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ 9 \end{bmatrix} =$	
---	---	---	--

(c) Plot the points $v_1 = (2,3)$, $v_2 = (4,6)$, $v_3 = (6,9)$ in Cartesian coordinates. On the same graph, plot the points corresponding to the vectors computed in part (b)

(d) Describe what the matrix B does to the points v_1, v_2, v_3 . Hint: Use phrases like "rotation by ... degrees" or "reflection across ... line".

"reflection across	line". Sp	ecify the	equation	for this	line
		•	V	•	

(e) What does the matrix B^2 do to the points v_1, v_2, v_3 ?