Q1 Key
a)

$$
\begin{array}{r}
x+y+z=3 \\
x+y+2 z=4 \\
y+2 z=2
\end{array}
$$

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 3 \\
1 & 1 & 2 & 4 \\
0 & 1 & 2 & 2
\end{array}\right] R_{2} \mapsto-R_{2}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
-1 & -1 & -2 & -4 \\
0 & 1 & 2 & 2
\end{array}\right] R_{2} \mapsto R_{1}+R_{2}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & 0 & -1 & -1 \\
0 & 1 & 2 & 2
\end{array}\right]
$$

$$
\left.\begin{array}{rl}
x+y+z & =3 \\
-z & =-1 \\
y+2 z & =2
\end{array}\right\} \quad \begin{array}{rlr}
x+0+1=3 & \Rightarrow x=2 & \left.\begin{array}{l}
\text { solution: } \\
z=1 \\
y \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
\end{array}
$$

b. Write down a matrix multiplication which you can perform to verify your solution

$$
*\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 2 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

* Perform the matrix multiplication.

$$
\left[\begin{array}{c}
1.2+0+1 \\
1.2+0+2.1 \\
0+0+2.1
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right]
$$

Q 2 Key (Source: Lecture Ra, 2b)
a)

$$
\left.\begin{array}{rl}
M:= \\
{\left[\begin{array}{ccccc}
1 & -2 & -1 & 3 & 1 \\
2 & -4 & 1 & 0 & 5 \\
1 & -2 & 2 & -3 & 4
\end{array}\right]} & \rightarrow\left[\begin{array}{ccccc}
1 & -2 & -1 & 3 & 1 \\
0 & 0 & 3 & -6 & 3 \\
1 & -2 & 2 & -3 & 4
\end{array}\right]
\end{array} \rightarrow>\left[\begin{array}{ccccc}
1 & -2 & -1 & 3 & 1 \\
0 & 0 & 3 & -6 & 3 \\
0 & 0 & 3 & -6 & 3
\end{array}\right]\right)
$$

b) The above REF matrix has two leading is, so $\operatorname{rank}(M)=2$.
c) For example, $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 5 & 0 \\ 0 & 1 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 5 & 0 \\ 0 & 1 & 6 \\ 0 & 1 & 6 \\ 0 & 1 & 6\end{array}\right]$ are all 4×3 matrices with rank 2.

Q3 Key (Source: lecture Ra)
Find solutions to the system

$$
\left\{\begin{aligned}
a-2 b+d & =2 \\
c-2 d & =1
\end{aligned}\right.
$$

Think: $\left[\begin{array}{cccc|c}1 & -2 & 0 & 1 & 2 \\ 0 & 0 & 1 & -2 & 1\end{array}\right]$
The end \& th columns (left of bar) have no leading is.
A. Two columns have no (leading 1. So, two parameters are needed to describe the solutions.
b. Let $b=t, d=s$

Then $\quad c-2 d=1 \Rightarrow c-2 s=1 \Rightarrow C=1+2 s$

$$
a-2 b+d=2 \Rightarrow a-2 t+s=2 \Rightarrow a=2+2 t-s
$$

The solutions are

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{r}
2+2 t-s \\
t \\
1+ \\
s s
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{r}
-1 \\
0 \\
2 \\
1
\end{array}\right] \quad \begin{aligned}
& \text { for all } \\
& \text { numbers } \\
& t \text { and } s
\end{aligned}
$$

$\left.\begin{array}{l}\text { C. The dimension is } 2 \\ d \text {. The shape is a plane }\end{array}\right\} \quad$ (source: Lecture $9 a$)

Q4 key
a) (Source: Lecture Ra)

$$
\left[\begin{array}{ccccc|c}
1 & -2 & -1 & 3 & 1 & 5 \\
0 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- Rightmost column has no leading 1, so the system is consistent.
- The End, 4th, 5th columns (left of the vertical bar) have no leading 1.

So there are infinitely many solutions, and we need 3 parameters to describe the solutions.
b) (Source: Lecture 39)

- If $M=\left[\begin{array}{lll}5 & 2 & 6\end{array}\right]$,

What is M^{\top} ?

$$
M^{\top}=\left[\begin{array}{l}
5 \\
2 \\
6
\end{array}\right]
$$

- What is the transpose of A^{T} ?

$$
\left(A^{\top}\right)^{\top}=A
$$

Q5 key
a. What is the size of the product

$$
\begin{array}{lll}
{\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & 3 \\
0 & 1
\end{array}\right]} & \begin{array}{l}
\text { Answer. } \\
2 \times 3
\end{array} 3 \times 2 & 2 \times 2
\end{array}
$$

b. What is the size of the product

$$
\begin{array}{rl}
{\left[\begin{array}{cc}
2 & 1 \\
-1 & 3 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & -1 \\
1 & 0 & 2
\end{array}\right]} & ? \\
3 \times 2 & \text { Answer : } \\
3 \times 3 & 3 \times 3
\end{array}
$$

C. What is the size of the product

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & 2 & \pi & 5 \\
3 & 0 & 0 & 2 \\
0 & 9 & 1 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \quad ?} \\
& 5 \times 4 \times 4 \times 1
\end{aligned}
$$

d. What is the size of the product

$$
\begin{array}{ccccc}
{\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 3 & 2 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & \pi & 5 \\
3 & 0 & 0 & 2 \\
0 & 9 & 1 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right]} & ? & \\
2 \times 5 & 5 \times 4 &
\end{array}
$$

e. Simplify each expression into a single matrix, or state that it does not exist.

$$
\begin{aligned}
& i 0\left(\left[\begin{array}{cc}
2 & 1 \\
0 & -1
\end{array}\right]+\left[\begin{array}{cc}
3 & -1 \\
2 & 0
\end{array}\right]\right)^{\top}=\left[\begin{array}{cc}
2+3 & 1-1 \\
0+2 & -1+0
\end{array}\right]^{\top}=\left[\begin{array}{cc}
5 & 0 \\
2 & -1
\end{array}\right]^{\top}=\left[\begin{array}{cc}
5 & 2 \\
0 & -1
\end{array}\right] \\
& i i 0\left[\begin{array}{cc}
0 & -1 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
2
\end{array}\right]\left[\begin{array}{ll}
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
-2 & 2 \\
5 & -5
\end{array}\right] \\
& \text { ii } 2 \cdot\left[\begin{array}{c}
1 \\
2 \\
-1 \\
0
\end{array}\right]-3\left[\begin{array}{c}
2 \\
0 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 \\
5 \\
1 \\
-2
\end{array}\right] \\
& \text { iv }\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-3 \\
5
\end{array}\right]
\end{aligned}
$$

Q6 Key

Qu Write down a 2×2 matrix Which commutes with every 2×2 matrix
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ the identity matrix
commutes with every 2×2 matrix
bo Write down another 2×2 matrix Which commutes with every 2×2 matrix.

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \text { works }\left\{\begin{array}{l}
{\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=2\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
2 a & 2 b \\
2 c & 2 d
\end{array}\right]} \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left(2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=2\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
2 a & 2 b \\
2 c & 2 d
\end{array}\right]}
\end{array}\right.
$$

C. Is matrix multiplication commutative? No
d. Write down two (easy to remember) matrices which do not commute with each other.

- If A has size 3×2 and B has size 2×3, $A B$ and $B A$ are defined but they have different sizes, so $A B \neq B A$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
0 & 3 \\
4 & 0
\end{array}\right] \\
& A B=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
0 & 3 \\
4 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 3 \\
8 & 0
\end{array}\right] \\
& B A=\left[\begin{array}{ll}
0 & 3 \\
4 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 6 \\
4 & 0
\end{array}\right]
\end{aligned}
$$

Ref: Matrix multiplication (Lecture 4a, 4b)

Q7 Key
Similar to Exercise 3 Lecture 5 a
a. Suppose A, B, and C are 2×2 matrices and $\operatorname{det}(c)=5$.

Rewrite the matrix equation

$$
A C-B C=4 C B
$$

as a formula for A.
Answer
a o Since $\operatorname{det}(c) \neq 0, \quad c^{-1}$ exists.

$$
\begin{aligned}
A C-B C & =4 C B \\
(A-B) C & =4 C B \\
(A-B) C C^{-1} & =4 C B C^{-1} \\
A-B & =4 C B C^{-1} \\
A & =4 C B C^{-1}+B
\end{aligned}
$$

b. Sanity check

$$
\begin{array}{cl}
4 \angle B C^{-1}+B & \stackrel{?}{=} 4 C B \\
\left(4 C B C^{-1}+B\right) C-B C & \\
4 C B C^{-1} C & +B C-B C \\
\underbrace{}_{0}=4 C B
\end{array}
$$

$$
\text { a) } M==\left[\begin{array}{ccccccc}
1 & 0 & 0 & -1 & 9 & 8 & 0 \\
0 & 1 & 7 & 3 & -2 & 3 & 1 \\
0 & 0 & 1 & 5 & 7 & 2 & 4 \\
0 & 0 & 0 & 2 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 5 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { is invertible }
$$

Why? $\operatorname{det}(M)=2.5=10 \neq 0$, and we know
if the determinant of a matrix is nonzero then the inverse of the matrix exists

- Alternatively, the rank of M is 7 and its size is 7×7, so M is invertible according to the invertibility -and- rank theorem
b) $C==\left[\begin{array}{ccccccc}1 & 0 & 0 & -1 & 9 & 8 & 0 \\ 0 & 1 & 7 & 3 & -2 & 3 & 1 \\ 0 & 0 & 1 & 5 & 7 & 2 & 4 \\ 0 & 0 & 0 & 2 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 5 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1\end{array}\right]$

Why? C is equivalent to the 7×7 matrix which has determinant 0 and rank smaller than 7 .

$$
\left[\begin{array}{ccccccc}
1 & 0 & 0 & -1 & 9 & 8 & 0 \\
0 & 1 & 7 & 3 & -2 & 3 & 1 \\
0 & 0 & 1 & 5 & 7 & 2 & 4 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & \frac{1}{5} \\
0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Q9 Key
ae A possible step-by-step process
For cofactor method, the most convenient choice is either the $4^{\text {th }}$ column or 4 th row. Here, 1 choose the 4 th column

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ccccc}
1 & -1 & 7 & 0 & 1 \\
0 & 2 & 6 & 0 & 1 \\
7 & 5 & -6 & 2 & 4 \\
0 & 0 & -1 & 0 & 0 \\
1 & -1 & 4 & 0 & 3
\end{array}\right] & =\underbrace{0 \cdot C_{14}}_{0}+\underbrace{0 \cdot C_{24}}_{0}+2 \cdot C_{34}+\underbrace{0 \cdot C_{44}}_{0}+\underbrace{0 \cdot C_{54}}_{0} \\
& =2 \cdot \underbrace{(-1)^{3+4}}_{-1} \operatorname{det}\left[\begin{array}{cccc}
1 & -1 & 7 & 1 \\
0 & 2 & 6 & 1 \\
0 & 0 & -1 & 0 \\
1 & -1 & 4 & 3
\end{array}\right]
\end{aligned}
$$

$$
=2 \cdot(-1) \quad \operatorname{det}\left[\begin{array}{cccc}
1 & -1 & 7 & 1 \\
0 & 2 & 6 & 1 \\
0 & 0 & -1 & 0 \\
0 & 0 & -3 & 2
\end{array}\right]
$$

$$
=-2 \cdot \operatorname{det}\left[\begin{array}{cccc}
1 & -1 & 7 & 1 \\
0 & 2 & 6 & 1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]^{\downarrow} \begin{aligned}
& \text { does not charge } \\
& \text { the determinant }
\end{aligned}
$$

$$
=-2 \quad 1.2 .-1.2
$$

$$
=8
$$

b. Yes, M is invertible because $\operatorname{det}(M) \neq 0$.

Con't below
(for alternative solution)

Key (Continued) Source: Lecture $7 a$
A. A possible step-by-step process Exercise 3
For cofactor method, the most convenient choice is either the 4 th column or 4 th row.
Here, 1 choose the 4 th row.

$$
C_{43}=\underbrace{(-1)^{4+3}}_{-1} \operatorname{det}\left[\begin{array}{ccccc}
1 & -1 & 0 & 1 \\
0 & 2 & 0 & 1 \\
7 & 5 & 2 & 4 \\
1 & -1 & 0 & 3
\end{array}\right]
$$

the original matrix without the 4 th row, 3rd column

Cofactor

$$
\begin{aligned}
& \text { along the } \\
& \text { ard column } \\
& \stackrel{\text { column }}{=}-1 \cdot\left[0+0+2 \cdot(-1)^{3+3} \operatorname{det}\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 2 & 1 \\
1 & -1 & 3
\end{array}\right]+0\right] \\
& =-1\left(2 \cdot \operatorname{det}\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]\right)=-1 \cdot 2 \cdot \underbrace{(1.2 .2)}_{\text {diagonal carries }} \\
& =-8
\end{aligned}
$$

So, $\begin{aligned} \operatorname{det}\left[\begin{array}{ccccc}1 & -1 & 7 & 0 & 1 \\ 0 & 2 & 6 & 0 & 1 \\ 7 & 5 & -6 & 2 & 4 \\ 0 & 0 & -1 & 0 & 0 \\ 1 & -1 & 4 & 0 & 3\end{array}\right] & =a_{41} c_{41}+a_{42} c_{42}+a_{43} c_{43}+a_{44} c_{44}+a_{45} c_{45} \\ & =0 . c_{41}+0 . c_{42}+(-1) c_{43}+0 . c_{44}+0 . c_{45} \\ & =0+0+(-1)(-8)+0+0\end{aligned}$
b. Yes, M is invertible because $\operatorname{det}(M) \neq 0$.
a. Find all eigenvectors of $A:=\left[\begin{array}{cc}4 & -2 \\ -2 & 1\end{array}\right]$ with eigenvalue $\lambda=0$

Set $A v=0 v$

$$
\left[\begin{array}{cc}
4 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rr|r}
4 & -2 & 0 \\
-2 & 1 & 0
\end{array}\right] } \\
& R_{1} \mapsto \frac{1}{2} R_{1} {\left[\begin{array}{rr|r}
2 & -1 & 0 \\
-2 & 1 & 0
\end{array}\right] } \\
& R_{2} \mapsto R_{1}+R_{2} {\left[\begin{array}{cc|c}
2 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] } \\
& \text { Let } y=t
\end{aligned} \begin{gathered}
2 x-t=0 \Rightarrow 2 x=t \Rightarrow x=\frac{1}{2} t
\end{gathered}
$$

The eigenvectors of A with eigenvalue $\lambda=0$ are of the form
$\binom{\frac{1}{2} t}{t}=t\binom{\frac{1}{2}}{1}$ for nonzero t.
b. Check Compute $\left[\begin{array}{cc}4 & -2 \\ -2 & 1\end{array}\right]\left[\begin{array}{c}\frac{1}{2} t \\ t\end{array}\right]$. Is it equal to $0\left[\begin{array}{c}\frac{1}{2} t \\ t\end{array}\right]$?
C. If $M\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, does it mean $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector of M ? Yes. This means $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector with eigenvalue 0 d. If $M\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, does it mean 0 is an eigenvalue of M ? Yes.
e. If $M\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, does it mean $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is an eigenvector of M ?

No. Eigenvector cannot be a zero matrix.
f. Suppose $B\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$. Write down one the eigenvalues $\begin{array}{r}\text { of the matrix } B \text {. }\end{array}$

- $\lambda=2$ is an eigenvalue of B because $B\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=2\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
a. Suppose M is a 4×4 matrix. (exactly one)
- Is it enough information to determine whether 5 is an eigenvalue of M ? Yes. (If so, state whether 5 is an eigenvalue.)
This means the only $\left(\begin{array}{l}x \\ y \\ \vdots \\ w\end{array}\right)$ satisfying $M\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)=5\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)$ is $\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$, So 5 is not an eigenvalue of M.
- Is it enough information to determine whether -5 is an eigenvalue of M ? (If so, state whether -5 is an eigenvalue.) Not enough information about -5
b. Suppose $\left(\begin{array}{lll}M-5 & I d\end{array}\right)\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right) \quad$ has infinitely mary
- Is it enough information to determine whether 5 is an eigenvalue of M ? Yes. (If so, state whether 5 is an eigenvalue.)
This means there are non-zero vectors $\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)$ satisfying $M\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)=5\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)$
So 5 is an eigenvalue of M.
- Is it enough information to determine whether -5 is an eigenvalue of M ? (If so, state whether -5 is an eigenvalue.) Not enough information about -5

12 Key
a. v is shown below. sketch 3 V and $\frac{1}{2} \mathrm{~V}$.

The length of $3 r$ is three times $|v|$.

b. sketch $v+w$, where v and w are shown below

$v+w$ are drawn in dashed line

Q 13
Key

$$
A^{4} \vec{v}=A^{3} A \vec{v}
$$

$\Theta A^{3} \lambda \vec{v}$ by assumption $A \vec{v}=\lambda \vec{v}$

$$
=\lambda A^{3} \vec{v}
$$

$$
=\lambda A^{2} A \vec{v}
$$

$$
\begin{aligned}
& \Theta \lambda A^{2} \lambda \vec{v} \text { by assumption } A \vec{v}=\lambda \vec{v} \\
& =\lambda \lambda A^{2} \vec{v} \\
& =\lambda \lambda A A \vec{v}
\end{aligned}
$$

$\Theta \lambda \lambda A \lambda \vec{v}$ by assumption $A \vec{v}=\lambda \vec{v}$

$$
=\lambda \lambda \lambda A \vec{v}
$$

$$
\begin{aligned}
& \Theta \lambda \lambda \lambda \lambda \vec{v} \text { by assumption } A \vec{v}=\lambda \vec{v} \\
& =\lambda^{4} \vec{v}
\end{aligned}
$$

We have shown that $A^{4} \vec{v}=\lambda^{4} \vec{v}$, so λ^{4} is an eigenvalue of A^{4} with \vec{v} as a λ^{4}-eigenvector of A^{4}.

Q 14 Key
a. False. Counter example: $\quad 2 x+3 y+4 z=0$ has 3 variables.

$$
x+2 y+2 z=1
$$

The augmented matrix has 2 rows.
b. False. Counter example: $\begin{aligned} x+y & =0 \\ x-y & =0\end{aligned}$ has exactly one solution $x-y=0$
C. True. Applying a sequence of elementary operations results in a system which has the same set of solutions as the original system.
d. True. Applying a sequence of elementary operations results in a system which has the same set of solutions as the original system.
e. False. Counter example: $M=\left[\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right], A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Q15 Key
a) True. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ is a property of det.
b) True. A square matrix is invertible iff its determinant is nonzero, so C^{-1} exists.
We know $\operatorname{det}(C) \operatorname{det}\left(C^{-1}\right)=\operatorname{det}\left(C C^{-1}\right)=\operatorname{det}(I d)=1$
So $-2 \operatorname{det}\left(C^{-1}\right)=1$.
C) False. Counter example: Let $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

$$
\begin{aligned}
& \operatorname{det}(-2 D)=\operatorname{det}\left(\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right]\right)=4 \\
& -2 \operatorname{det}(D)=-2 \operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=-2
\end{aligned}
$$

d) False. Counter example: Let $E=F=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \operatorname{det}(E+F)=\operatorname{det}\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\right)=4 \\
& \operatorname{det}(E)+\operatorname{det}(F)=1+1=2
\end{aligned}
$$

Q16 Key

Answer whether each statement is TRUE or FALSE.
If true, give a justification. If false, provide a counterexample.
a.) True. Ref: Lee $5 a$

Justification: A^{-1} exists, so $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]=A^{-1}\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 2\end{array}\right]$
b) True. Ref: Lee ba

Justification: A square matrix is invertible if and only if its determinant is nonzero.
c) True. Ref:Lec5b

Justification: if
True. Ref: Lee Sb
Justification: The algorithm starting from $[A \mid I d]$ tells us that if we can perform
row operations to get to $[I d \mid B]$
then B is the inverse of A.
e) True. Ref:Lec Sb

Justification: The algorithm starting from $[A \mid I d]$ tells us that if A has an inverse then we must be able to per form row operations to get to $[I d \mid B]$.

Q 17 Key
a. Compute the polynomial $P_{A}(x)=\operatorname{det}(x$ Id $-A)$ for $A=\left[\begin{array}{ccc}1 & 4 & 5 \\ 0 & -2 & 6 \\ 0 & 0 & 3\end{array}\right]$. What are the eigenvalues of A ?

$$
\operatorname{det}(x I d-A)=\operatorname{det}\left(\left[\begin{array}{ccc}
x-1 & -4 & -5 \\
0 & x+2 & -6 \\
0 & 0 & x-3
\end{array}\right]\right)
$$

$=(x-1)(x+2)(x-3)$ because the matrix is upper triangular,
simply take the product of the diagonal entries
The eigenvalues of A are $1,-2,3$.
b. Compute the polynomial $P_{A}(x)=\operatorname{det}(x$ Id $-A)$
for $A=\left[\begin{array}{ccc}0 & 2 & -1 \\ -1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right]$. What are the eigenvalues of A ?

$$
\operatorname{det}(x I d-A)=\operatorname{det}\left(\left[\begin{array}{ccc}
x & -2 & 1 \\
1 & x-3 & 0 \\
0 & 0 & x-2
\end{array}\right]\right)
$$

1 will use cofactor method along the 3 rd row because there are many os

$$
\begin{aligned}
& =(x-2)(-1)^{3+3} \operatorname{det}\left[\begin{array}{cc}
x & -2 \\
1 & x-3
\end{array}\right] \\
& =(x-2) \quad(x(x-3)-(1)(-2)) \\
& =(x-2)\left(x^{2}-3 x+2\right) \\
& =(x-2)(x-1)(x-2) \\
& =(x-1)(x-2)^{2}
\end{aligned}
$$

The eigenvalues of A are 1 and 2 .

