Contents

1 Question (lecture11a.pdf) 1
2 Question (lecture12a.pdf)
3 Question (lecture14a.pdf)
4 Question (lecture12a.pdf, lecture12b.pdf)

5 Question (lecture12a.pdf, lecture12b.pdf)
6 Question (lecture12a.pdf)
7 Question (lecture13a.pdf)
8 Question (lecture13a.pdf)
9 Question (lecture13b.pdf)
10 Question (lecture13b.pdf)
11 Question (lecture14a.pdf)
12 Question (lecture14a.pdf)

1 Question (lecture11a.pdf)

$$
\text { Let } M:=\left[\begin{array}{ccccc}
1 & 2 & 0 & 3 & 2 \\
1 & 0 & 2 & -1 & 6 \\
2 & 4 & 0 & 6 & 0
\end{array}\right] \text {. }
$$

Is $\left[\begin{array}{c}-1 \\ -1 \\ 1 \\ 1\end{array}\right]$ in $\operatorname{ker}(M)$?

Solution: We can compute

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & 3 \\
1 & 0 & 2 & -1 \\
2 & 4 & 0 & 6
\end{array}\right]\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

So the answer is Yes.

2 Question (lecture12a.pdf)

Let

$$
B:=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
2 & -4 & -2
\end{array}\right]
$$

Find a spanning set for the kernel of B.

Solution: First, we compute the kernel of B, that is, find all solutions to

$$
B\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Perform row reduce on the augmented matrix associated to $B\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$:

$$
\left[\begin{array}{ccc|c}
-1 & 2 & 1 & 0 \\
2 & -4 & -2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & -2 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since the 2 nd column has no leading 1 , let $y=t$. The 2 rd column also has no leading 1 , so let $z=r$. Then $x=2 y+z=2 t+r$, so

$$
\operatorname{ker} B=\left\{\left[\begin{array}{c}
2 t+r \\
t \\
r
\end{array}\right] \text { for } t, r \text { in } \mathbb{R}\right\}=\left\{t\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+r\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text { where } t, r \text { are in } \mathbb{R}\right\}
$$

So a possible spanning set for the kernel of B is

$$
\left\{\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\} .
$$

3 Question (lecture14a.pdf)

Find a basis for the kernel of

$$
B:=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
2 & -4 & -2
\end{array}\right]
$$

Solution: The spanning set given in the solution key to the previous question works as a basis because the algorithm given in the solution key is Algorithm 1 ("Basis algorithm for the kernel of a matrix") in lecture14a.pdf. So a possible basis for the kernel of B is the set

$$
\left\{\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}
$$

4 Question (lecture12a.pdf, lecture12b.pdf)

(For a similar problem, see "SAMPLE STUDENT PROOF" for Exercise 3 of lecture12a.pdf.)
Let $V=\left\{\left[\begin{array}{c}a \\ b \\ a+b\end{array}\right]\right.$ where a, b are real numbers $\}$, that is, the subspace of \mathbb{R}^{3} consisting of height- 3 vectors whose 3rd entry is the sum of the first two entries.

Let

$$
S:=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\} .
$$

a.) Show that S is a spanning set for V.

Solution: First, we verify that the vectors of S are in $V:\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is in V because $1+2=3$, and $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ is in V because $0+1=1$.

Next, we show that every vector in V can be written as a linear combination of the vectors of S :
Let v be in V. That is, $v=\left[\begin{array}{c}a \\ b \\ a+b\end{array}\right]$ for some a, b in \mathbb{R}. We need to show that the equation

$$
x\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
a \\
b \\
a+b
\end{array}\right]
$$

has at least one solution. In other words, we need to show that

$$
\left[\begin{array}{ll}
1 & 0 \tag{1}\\
2 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
a \\
b \\
a+b
\end{array}\right]
$$

has at least one solution.
Turn (1) into an augmented matrix, then row reduce.

$$
\left[\begin{array}{cc|c}
1 & 0 & a \\
2 & 1 & b \\
3 & 1 & a+b
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & 0 & a \\
0 & 1 & b-2 a \\
3 & 1 & a+b
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & 0 & a \\
0 & 1 & b-2 a \\
0 & 1 & a+b-3 a
\end{array}\right]=\left[\begin{array}{cc|c}
1 & 0 & a \\
0 & 1 & b-2 a \\
0 & 1 & b-2 a
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & 0 & a \\
0 & 1 & b-2 a \\
0 & 0 & 0
\end{array}\right]
$$

Since there is no leading 1 in the right-most column of an equivalent REF matrix, the equation (1) is consistent. So v can be written as a linear combination of the two vectors of S. This means the set S spans V.
b.) Determine whether S is linearly independent or linearly dependent. Explain.

Solution:

We need to check whether that the equation

$$
x\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

has a non-trivial solution. In other words, we need to check whether

$$
\left[\begin{array}{ll}
1 & 0 \tag{2}\\
2 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

has a solution other than $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
Turn (2) into an augmented matrix, then row reduce.

$$
\left[\begin{array}{ll|l}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Every column (to the left of the vertical line) of an equivalent REF matrix has a leading 1, so (2) has one unique solution (the trivial solution). Therefore, the only way to write the zero vector as a linear combination of the vectors in S is

$$
0\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+0\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Thus, the set S is linearly independent
c.) Is S is a basis for V ? Explain.

Solution: Yes, S is a basis for V. Part (a) tells us that S is a spanning set for V and part (b) tells us that S is linearly independent, so S is a basis for V (per definition of basis).

5 Question (lecture12a.pdf, lecture12b.pdf)

Let $V=\left\{\left[\begin{array}{c}a \\ b \\ a+b\end{array}\right]\right.$ where a, b are real numbers $\}$ the subspace of \mathbb{R}^{3} consisting of height-3 vectors whose 3rd entry is the sum of the first two entries.

Find a spanning set for V that is different from the spanning set given in the previous question.

Solution: For any numbers a, b, we can write $\left[\begin{array}{c}a \\ b \\ a+b\end{array}\right]=a\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]+b\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.
So the set of vectors $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ works as a spanning set for V (that is different than the spanning set given in the previous question).

6 Question (lecture12a.pdf)

$$
\text { Let } A:=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 4 & 3 & 5
\end{array}\right] \text {. }
$$

a. Compute $\operatorname{ker}(A)$, i.e., find all solutions to $A\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Parametrize the solution set using parameters s and t.

Solution: Perform row reduce on the augmented matrix associated to $A\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$:

$$
\left[\begin{array}{llll|l}
1 & 2 & 1 & 2 & 0 \\
2 & 4 & 3 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll|l}
1 & 2 & 1 & 2 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Since the 2 nd and 4th columns have no leading one (while the 1 st and 3rd columns do), let $b=s$ and $d=t$.
Then

$$
\begin{array}{r}
a+2 b+c+2 d=0 \\
c+d=0
\end{array}
$$

so $c=-t$ and $a+2 s+(-t)+2 t=0$, that is, $a=-2 s-t$.

$$
\operatorname{ker} B=\left\{\left[\begin{array}{c}
-2 s-t \\
s \\
-t \\
t
\end{array}\right] \text { for } s, t \text { in } \mathbb{R}\right\}=\left\{s\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right] \text { where } s, t \text { are in } \mathbb{R}\right\}
$$

[^0]b. Find two vectors \mathbf{v} and \mathbf{w} where you can rewrite your parametrization of the kernel of A as $s \mathbf{v}+t \mathbf{w}$.

Solution: A possible answer: $\mathbf{v}:=\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right]$ and $\mathbf{w}:=\left[\begin{array}{c}-1 \\ 0 \\ -1 \\ 1\end{array}\right]$ (there are many possible answers)
c. Finish each of the following sentences.
(i) The kernel of A is equal to the set of all linear combinations of the vectors \qquad

Solution: A possible answer: $\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 0 \\ -1 \\ 1\end{array}\right]$ (there are many possible answers)
(ii) The kernel of A is equal to the span of the vectors \qquad

Solution: A possible answer: $\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 0 \\ -1 \\ 1\end{array}\right]$ (there are many possible answers)
(iii) The kernel of A is equal to the image of a matrix \qquad

Solution:

Recall Fact 1 of lecture 12 a says: im $M=$ span of the column vectors of M, e.g. Exercise 2:

$$
\operatorname{im}\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]=\text { span of the columns. }
$$

Answer: $\left[\begin{array}{cc}-2 & -1 \\ 1 & 0 \\ 0 & -1 \\ 0 & 1\end{array}\right]$ (the concatenation of the two vectors I have computed above. If you choose two different vectors, your concatenation would be different.)

7 Question (lecture13a.pdf)

a.) Determine whether $S:=\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}6 \\ 7 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]\right\}$ is or is not a basis of \mathbb{R}^{3}.
b.) Use computation (show all steps of the computation) and words (write in complete sentences).

Solution: a.) Answer: S is not a basis for \mathbb{R}^{3}.
b.) There are many ways to show that S is not a basis of \mathbb{R}^{3}.

Possible answer A: One way is to find a specific vector in \mathbb{R}^{3} which cannot be written as a linear combination of the vectors in S. For example, you can show that the vector $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ cannot be written as a linear combination of
the vectors in S : Set up the augmented matrix with columns of S of the left and $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ on the right. After row reduce, you conclude that the system is inconsistent.

Possible Answer B: We can show S is not linearly independent. Set the zero vector as a linear combination of the three vectors in S. The corresponding augmented matrix is

$$
\left[\begin{array}{lll|l}
1 & 6 & 3 & 0 \\
2 & 7 & 1 & 0 \\
1 & 4 & 1 & 0
\end{array}\right]
$$

After row reduce, you should get an REF matrix with all 0 s on the third row (there are many possibly REF matrices):

$$
\left[\begin{array}{lll|l}
1 & 6 & 3 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This means we can write the zero vector as a linear combination of the vectors of S in more than one way. So S is not linearly independent.

8 Question (lecture13a.pdf)

a.) Determine whether the set of vectors $S:=\left\{\left[\begin{array}{c}5 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 0\end{array}\right]\right\}$ is or is not a basis for \mathbb{R}^{3}.
b.) Use computation (show all steps of the computation) and words (write in complete sentences).

Solution: a.) Answer: S is a basis for \mathbb{R}^{3}.
b.) Let A be the concatenation of these vectors:

$$
A=\left[\begin{array}{ccc}
5 & 1 & 3 \\
2 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right]
$$

To determine whether it is a basis or not, we can either solve the equation $A \mathbf{v}=\mathbf{b}$ for an arbitrary vector $\mathbf{b} \in \mathbb{R}^{3}$, or since the subspace is \mathbb{R}^{3}, we can just find the rank of A.

Let us do the former: Let $\mathbf{b} \in \mathbb{R}^{3}$ be an arbitrary vector. Then to solve the equation $A \mathbf{v}=\mathbf{b}$, we consider the associated augmented matrix $[A \mid \mathbf{b}]$:

$$
\left[\begin{array}{ccc|c}
5 & 1 & 3 & b_{1} \\
2 & 0 & -1 & b_{2} \\
-1 & 1 & 0 & b_{3}
\end{array}\right]
$$

Let us use row operations to simplify this system:

$$
\left[\begin{array}{ccc|c}
5 & 1 & 3 & b_{1} \\
2 & 0 & -1 & b_{2} \\
-1 & 1 & 0 & b_{3}
\end{array}\right] \longmapsto\left[\begin{array}{ccc|c}
0 & 6 & 3 & b_{1}+5 b_{3} \\
0 & 2 & -1 & b_{2}+2 b_{3} \\
-1 & 1 & 0 & b_{3}
\end{array}\right] \longmapsto\left[\begin{array}{ccc|c}
0 & 0 & 6 & b_{1}-3 b_{2}-b_{3} \\
0 & 2 & -1 & b_{2}+2 b_{3} \\
-1 & 1 & 0 & b_{3}
\end{array}\right]
$$

where in the first step, the row operations are adding 2 (Row 3) to Row 2 and 5 (Row 3) to Row 1 ; and in the second step, the row operation is adding -3 (Row 2) to Row 1. The corresponding system of equations to the
matrix on the right is:

$$
\begin{aligned}
6 z & =b_{1}-3 b_{2}-b_{3} \\
2 y-z & =b_{2}+2 b_{3} \\
-x+y & =b_{3}
\end{aligned}
$$

From the first equation, we get that $z=\frac{b_{1}-3 b_{2}-b_{3}}{6}$. Putting that in the second equation and solving gives us $y=$ $\frac{1}{2}\left(b_{2}+2 b_{3}+\frac{b_{1}-3 b_{2}-b_{3}}{6}\right)$. Putting these in the third equation and solving gives us $x=\frac{1}{2}\left(b_{2}+2 b_{3}+\frac{b_{1}-3 b_{2}-b_{3}}{6}\right)-$ b_{3}. Therefore, for every $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right] \in \mathbb{R}^{3}$, the system $A \mathbf{v}=\mathbf{b}$ has a unique solution. Therefore, the set of vectors S is indeed a basis of \mathbb{R}^{3}.

9 Question (lecture13b.pdf)

Write down a 4×5 matrix M such that the dimension of $\operatorname{im}(M)$ is 3 .

Solution: The dimension of the image of a matrix is equal to the rank of the matrix. So write down any matrix M with 4 rows and 5 columns whose rank is 3 . (Recall that rank of M is the same as the number of leading 1s in an REF matrix equivalent to M).
A possible matrix is $\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 5 & 6 \\ 0 & 0 & 0 & 5 & 6\end{array}\right]$

10 Question (lecture13b.pdf)

$$
\text { Let } M:=\left[\begin{array}{ccccc}
1 & 2 & 0 & 3 & 2 \\
1 & 0 & 2 & -1 & 6 \\
2 & 4 & 0 & 6 & 0
\end{array}\right] \text {. }
$$

a.) What is the dimension of $\operatorname{im}(M)$?

Solution: I will follow "Algorithm 5, rephrased" in lecture13b.pdf:
I perform a few elementary row operations until I reach a row-echelon form:

$$
\left[\begin{array}{ccccc}
1 & 2 & 0 & 3 & 2 \\
1 & 0 & 2 & -1 & 6 \\
2 & 4 & 0 & 6 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{ccccc}
1 & 2 & 0 & 3 & 2 \\
0 & 1 & -1 & 2 & -2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

An REF matrix equivalent to M has 3 leading ones, so the dimension of $\operatorname{im}(M)$ is 3 .
b.) Now find a basis of $\operatorname{im}(M)$.

Solution: We will use the REF matrix equivalent to M (which has been computed in the previous solution box):
A possible basis for $\operatorname{im}(M)$ is the original columns of M corresponding to the columns in the REF matrix which have leading 1s, the 1st, 2nd, and 5th column: $\left\{\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 6 \\ 0\end{array}\right]\right\}$

11 Question (lecture14a.pdf)

Let B be a 4×5 matrix. After row reducing to an REF matrix, we learn that this REF matrix has 3 leading 1 s .
a. What is the rank of B ?

Solution: The rank of B is 3 because the question says that an REF matrix equivalent to B has three leading 1s.
b. How many parameters are required to parametrize the kernel of B ?

Solution: Since B has 5 columns and an REF matrix corresponding to B has 3 leading 1s, we need $5-3=2$ parameters.
c. How many vectors are required to span the kernel of B ?

Solution: Also $5-3=2$.

12 Question (lecture14a.pdf)

Write down a 4×5 matrix M such that the dimension of $\operatorname{ker}(M)$ is 2 .

Solution: The dimension of the kernel of a matrix is equal to (the number of columns of the matrix) minus (the rank of the matrix). So write down any matrix M with 4 rows and 5 columns whose rank is 3 .
A possible matrix is $\left[\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 5 & 6 \\ 0 & 0 & 0 & 5 & 6\end{array}\right]$

[^0]: (Recommended sanity check: Pick a nonzero vector \mathbf{v} in your solution set, compute $A \mathbf{v}$, and verify that it is equal to $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.)

