Contents

1	Question (lecture11a.pdf)	1
2	Question (lecture12a.pdf)	1
3	Question (lecture14a.pdf)	2
4	Question (lecture12a.pdf, lecture12b.pdf)	2
5	Question (lecture12a.pdf, lecture12b.pdf)	4
6	Question (lecture12a.pdf)	4
7	Question (lecture13a.pdf)	5
8	Question (lecture13a.pdf)	6
9	Question (lecture13b.pdf)	7
10	Question (lecture13b.pdf)	7
11	Question (lecture14a.pdf)	8
12	Question (lecture14a.pdf)	8

1 Question (lecture11a.pdf)

Let $M := \begin{bmatrix} 1 & 2 & 0 & 3 & 2 \\ 1 & 0 & 2 & -1 & 6 \\ 2 & 4 & 0 & 6 & 0 \end{bmatrix}$.

Is $\begin{bmatrix} -1\\ -1\\ 1\\ 1 \end{bmatrix}$ in ker(M)?

Solution: We can compute

$$\begin{bmatrix} 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & -1 \\ 2 & 4 & 0 & 6 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

E . 7

So the answer is Yes.

2 Question (lecture12a.pdf)

Let

$$B := \begin{bmatrix} -1 & 2 & 1\\ 2 & -4 & -2 \end{bmatrix}.$$

Find a spanning set for the kernel of B.

Solution: First, we compute the kernel of B, that is, find *all* solutions to

$$B\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \begin{bmatrix} 0\\ 0\end{bmatrix}.$$

Perform row reduce on the augmented matrix associated to $B \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$:

$$\begin{bmatrix} -1 & 2 & 1 & | & 0 \\ 2 & -4 & -2 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Since the 2nd column has no leading 1, let y = t. The 2rd column also has no leading 1, so let z = r. Then x = 2y + z = 2t + r, so

$$\ker B = \left\{ \begin{bmatrix} 2t+r\\t\\r \end{bmatrix} \text{ for } t, r \text{ in } \mathbb{R} \right\} = \left\{ t \begin{bmatrix} 2\\1\\0 \end{bmatrix} + r \begin{bmatrix} 1\\0\\1 \end{bmatrix} \text{ where } t, r \text{ are in } \mathbb{R} \right\}$$

So a possible spanning set for the kernel of ${\cal B}$ is

ſ	$\lceil 2 \rceil$		[1]		
$ \langle$	1	,	0	}	
	0		1	J	

3 Question (lecture14a.pdf)

Find a basis for the kernel of

$$B := \begin{bmatrix} -1 & 2 & 1\\ 2 & -4 & -2 \end{bmatrix}$$

Solution: The spanning set given in the solution key to the previous question works as a basis because the algorithm given in the solution key is Algorithm 1 ("Basis algorithm for the kernel of a matrix") in lecture 14a.pdf. So a possible basis for the kernel of B is the set

4 Question (lecture12a.pdf, lecture12b.pdf)

(For a similar problem, see "SAMPLE STUDENT PROOF" for Exercise 3 of lecture12a.pdf.)

Let $V = \left\{ \begin{bmatrix} a \\ b \\ a+b \end{bmatrix}$ where a, b are real numbers $\right\}$, that is, the subspace of \mathbb{R}^3 consisting of height-3 vectors whose 3rd entry is the sum of the first two entries.

Let

$$S := \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}.$$

a.) Show that S is a spanning set for V.

Solution: First, we verify that the vectors of S are in V: $\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$ is in V because 1 + 2 = 3, and $\begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix}$ is in V because 0 + 1 = 1.

Next, we show that every vector in V can be written as a linear combination of the vectors of S: Let v be in V. That is, $v = \begin{bmatrix} a \\ b \\ a+b \end{bmatrix}$ for some a, b in \mathbb{R} . We need to show that the equation

$$x \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ b \\ a+b \end{bmatrix}$$

has at least one solution. In other words, we need to show that

$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \\ a+b \end{bmatrix}$$
(1)

has at least one solution.

Turn (1) into an augmented matrix, then row reduce.

$$\begin{bmatrix} 1 & 0 & | & a \\ 2 & 1 & | & b \\ 3 & 1 & | & a+b \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & | & a \\ 0 & 1 & | & b-2a \\ 3 & 1 & | & a+b \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & | & a \\ 0 & 1 & | & b-2a \\ 0 & 1 & | & a+b-3a \end{bmatrix} = \begin{bmatrix} 1 & 0 & | & a \\ 0 & 1 & | & b-2a \\ 0 & 1 & | & b-2a \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & | & a \\ 0 & 1 & | & b-2a \\ 0 & 0 & | & 0 \end{bmatrix}$$

Since there is no leading 1 in the right-most column of an equivalent REF matrix, the equation (1) is consistent. So v can be written as a linear combination of the two vectors of S. This means the set S spans V.

b.) Determine whether S is linearly independent or linearly dependent. Explain.

Solution:

We need to check whether that the equation

$$x \begin{bmatrix} 1\\2\\3 \end{bmatrix} + y \begin{bmatrix} 0\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

has a non-trivial solution. In other words, we need to check whether

$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(2)

has a solution other than $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Turn (2) into an augmented matrix, then row reduce.

$$\begin{bmatrix} 1 & 0 & | & 0 \\ 2 & 1 & | & 0 \\ 3 & 1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 3 & 1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 1 & | & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

Every column (to the left of the vertical line) of an equivalent REF matrix has a leading 1, so (2) has one unique solution (the trivial solution). Therefore, the only way to write the zero vector as a linear combination of the vectors in S is

$$0\begin{bmatrix}1\\2\\3\end{bmatrix}+0\begin{bmatrix}0\\1\\1\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}.$$

Thus, the set S is linearly independent .

c.) Is S is a basis for V? Explain.

Solution: Yes, S is a basis for V. Part (a) tells us that S is a spanning set for V and part (b) tells us that S is linearly independent, so S is a basis for V (per definition of basis).

5 Question (lecture12a.pdf, lecture12b.pdf)

Let $V = \left\{ \begin{bmatrix} a \\ b \\ a+b \end{bmatrix}$ where a, b are real numbers $\right\}$ the subspace of \mathbb{R}^3 consisting of height-3 vectors whose 3rd entry is the sum of the first two entries.

Find a spanning set for V that is different from the spanning set given in the previous question.

6 Question (lecture12a.pdf)

Let
$$A := \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 4 & 3 & 5 \end{bmatrix}$$
.

a. Compute ker(A), i.e., find all solutions to $A\begin{bmatrix} a\\b\\c\\d\end{bmatrix} = \begin{bmatrix} 0\\0\end{bmatrix}$. Parametrize the solution set using parameters s and t.

Solution: Perform row reduce on the augmented matrix associated to $A \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$:

1	2	1	2	0	1	2	1	2	$\begin{bmatrix} 0 \end{bmatrix}$	
2	4	3	5	0	$\rightarrow [0]$	0	1	1	0	

Since the 2nd and 4th columns have no leading one (while the 1st and 3rd columns do), let b = s and d = tThen a + 2b + c + 2d = 0,

$$c + d = 0$$

so
$$c = -t$$
 and $a + 2s + (-t) + 2t = 0$, that is, $a = -2s - t$

$\ker B = \left\{ \begin{bmatrix} -2s - t \\ s \\ -t \\ t \end{bmatrix} \text{ for } s, t \text{ in } \mathbb{R} \right\} = \left\{ s \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ -1 \\ 1 \end{bmatrix} \text{ where } s, t \text{ are in } \mathbb{R} \end{bmatrix}$
--

(Recommended sanity check: Pick a nonzero vector **v** in your solution set, compute A**v**, and verify that it is equal to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.)

b. Find two vectors \mathbf{v} and \mathbf{w} where you can rewrite your parametrization of the kernel of A as $s\mathbf{v} + t\mathbf{w}$.

Solution: A possible answer:
$$\mathbf{v} := \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}$$
 and $\mathbf{w} := \begin{bmatrix} -1\\0\\-1\\1 \end{bmatrix}$ (there are many possible answers)

c. Finish each of the following sentences.

(i) The kernel of A is equal to the set of all linear combinations of the vectors

Solution: A possible answer:	$\begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}$	and	$\begin{bmatrix} -1\\0\\-1\\1 \end{bmatrix}$	(there are many possible answers)	
------------------------------	---	-----	--	-----------------------------------	--

(ii) The kernel of A is equal to the *span* of the vectors

Solution: A possible answer	$\begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}$ at	nd $\begin{bmatrix} -1\\ 0\\ -1\\ 1 \end{bmatrix}$	(there are many possible answers)	
-----------------------------	--	--	-----------------------------------	--

(iii) The kernel of A is equal to the *image* of a matrix _

Solution:

Recall Fact 1 of lecture 12a says: im M = span of the column vectors of M, e.g. Exercise 2:

 $\operatorname{im} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \operatorname{span of the columns.}$

Answer: $\begin{bmatrix} -2 & -1 \\ 1 & 0 \\ 0 & -1 \\ 0 & 1 \end{bmatrix}$ (the concatenation of the two vectors I have computed above. If you choose two different vectors, your concatenation would be different.)

7 Question (lecture13a.pdf)

a.) Determine whether $S := \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 6\\7\\4 \end{bmatrix}, \begin{bmatrix} 3\\1\\1 \end{bmatrix} \right\}$ is or is **not** a basis of \mathbb{R}^3 . b.) Use computation (show all steps of the computation) and words (write in complete sentences).

Solution: a.) Answer: S is not a basis for \mathbb{R}^3 .

b.) There are many ways to show that S is not a basis of \mathbb{R}^3 .

Possible answer A: One way is to find a specific vector in \mathbb{R}^3 which cannot be written as a linear combination of the vectors in S. For example, you can show that the vector $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ cannot be written as a linear combination of

the vectors in S: Set up the augmented matrix with columns of S of the left and $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ on the right. After row reduce, you conclude that the system is inconsistent.

Possible Answer B: We can show S is not linearly independent. Set the zero vector as a linear combination of the three vectors in S. The corresponding augmented matrix is

$$\begin{bmatrix} 1 & 6 & 3 & | & 0 \\ 2 & 7 & 1 & | & 0 \\ 1 & 4 & 1 & | & 0 \end{bmatrix}.$$

After row reduce, you should get an REF matrix with all 0s on the third row (there are many possibly REF matrices):

[1	6	3	$\left 0 \right $	
0	1	1	0	
0	0	0	0	

This means we can write the zero vector as a linear combination of the vectors of S in more than one way. So S is not linearly independent.

8 Question (lecture13a.pdf)

- a.) Determine whether the set of vectors $S := \left\{ \begin{bmatrix} 5\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 3\\-1\\0 \end{bmatrix} \right\}$ is or is *not* a basis for \mathbb{R}^3 .
- b.) Use computation (show all steps of the computation) and words (write in complete sentences).

Solution: a.) Answer: S is a basis for \mathbb{R}^3 .

b.) Let A be the concatenation of these vectors:

$$A = \begin{bmatrix} 5 & 1 & 3 \\ 2 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}$$

To determine whether it is a basis or not, we can **either** solve the equation $A\mathbf{v} = \mathbf{b}$ for an arbitrary vector $\mathbf{b} \in \mathbb{R}^3$, or since the subspace is \mathbb{R}^3 , we can just find the rank of A.

Let us do the former: Let $\mathbf{b} \in \mathbb{R}^3$ be an arbitrary vector. Then to solve the equation $A\mathbf{v} = \mathbf{b}$, we consider the associated augmented matrix $[A \mid \mathbf{b}]$:

$$\begin{bmatrix} 5 & 1 & 3 & b_1 \\ 2 & 0 & -1 & b_2 \\ -1 & 1 & 0 & b_3 \end{bmatrix}$$

Let us use row operations to simplify this system:

$$\begin{bmatrix} 5 & 1 & 3 & b_1 \\ 2 & 0 & -1 & b_2 \\ -1 & 1 & 0 & b_3 \end{bmatrix} \longmapsto \begin{bmatrix} 0 & 6 & 3 & b_1 + 5b_3 \\ 0 & 2 & -1 & b_2 + 2b_3 \\ -1 & 1 & 0 & b_3 \end{bmatrix} \longmapsto \begin{bmatrix} 0 & 0 & 6 & b_1 - 3b_2 - b_3 \\ 0 & 2 & -1 & b_2 + 2b_3 \\ -1 & 1 & 0 & b_3 \end{bmatrix}$$

where in the first step, the row operations are adding 2(Row 3) to Row 2 and 5(Row 3) to Row 1; and in the second step, the row operation is adding -3(Row 2) to Row 1. The corresponding system of equations to the

matrix on the right is:

$$6z = b_1 - 3b_2 - b_3$$
$$2y - z = b_2 + 2b_3$$
$$-x + y = b_3$$

From the first equation, we get that $z = \frac{b_1 - 3b_2 - b_3}{6}$. Putting that in the second equation and solving gives us $y = \frac{1}{2} \left(b_2 + 2b_3 + \frac{b_1 - 3b_2 - b_3}{6} \right)$. Putting these in the third equation and solving gives us $x = \frac{1}{2} \left(b_2 + 2b_3 + \frac{b_1 - 3b_2 - b_3}{6} \right) - b_3$. Therefore, for every $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \in \mathbb{R}^3$, the system $A\mathbf{v} = \mathbf{b}$ has a unique solution. Therefore, the set of vectors S is indeed a basis of \mathbb{R}^3 .

9 Question (lecture13b.pdf)

Write down a 4×5 matrix M such that the dimension of im(M) is 3.

Solution: The dimension of the image of a matrix is equal to the rank of the matrix. So write down any matrix M with 4 rows and 5 columns whose rank is 3. (Recall that rank of M is the same as the number of leading 1s in an REF matrix equivalent to M).

A possible matrix is $\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 5 & 6 \\ 0 & 0 & 0 & 5 & 6 \end{bmatrix}$

10 Question (lecture13b.pdf)

Let
$$M := \begin{bmatrix} 1 & 2 & 0 & 3 & 2 \\ 1 & 0 & 2 & -1 & 6 \\ 2 & 4 & 0 & 6 & 0 \end{bmatrix}$$
.

a.) What is the dimension of im(M)?

Solution: I will follow "Algorithm 5, rephrased" in <u>lecture13b.pdf</u>: I perform a few elementary row operations until I reach a row-echelon form:

 $\begin{bmatrix} 1 & 2 & 0 & 3 & 2 \\ 1 & 0 & 2 & -1 & 6 \\ 2 & 4 & 0 & 6 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 0 & 3 & 2 \\ 0 & 1 & -1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$

An REF matrix equivalent to M has 3 leading ones, so the dimension of im(M) is 3.

b.) Now find a basis of im(M).

Solution: We will use the REF matrix equivalent to M (which has been computed in the previous solution
box):
A possible basis for $im(M)$ is the original columns of M corresponding to the columns in the REF matrix which
have leading 1s, the 1st, 2nd, and 5th column: $\left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\0\\4 \end{bmatrix}, \begin{bmatrix} 2\\6\\0 \end{bmatrix} \right\}$

11 Question (lecture14a.pdf)

Let B be a 4×5 matrix. After row reducing to an REF matrix, we learn that this REF matrix has 3 leading 1s.

a. What is the rank of B?

Solution: The rank of B is 3 because the question says that an REF matrix equivalent to B has three leading 1s.

b. How many parameters are required to parametrize the kernel of B?

Solution: Since *B* has 5 columns and an REF matrix corresponding to *B* has 3 leading 1s, we need 5-3=2 parameters.

c. How many vectors are required to span the kernel of B?

Solution: Also 5 - 3 = 2.

12 Question (lecture14a.pdf)

Write down a 4×5 matrix M such that the dimension of ker(M) is 2.

Solution: The dimension of the kernel of a matrix is equal to (the number of columns of the matrix) minus								
(the rank of the matrix). So write down any matrix M with 4 rows and 5 columns whose rank is 3.								
	[0	1	0	0	0			
A maggible matrix is	0	0	1	2	0			
A possible matrix is	0	0	0	5	6			
	0	0	0	5	6			