Review: Vectors in 2D and 3D	Linear transformations	Rotation	Projection	Translation
000	0000	0	00	000

Lecture 9b

Vector Geometry with matrices

We can visualize 2-vectors in the plane in two ways.

• Interpret the entries as coordinates of a point.

 $\begin{vmatrix} 2 \\ 3 \end{vmatrix} \xrightarrow{\dots \text{becomes...}}$

• (2,3)

Confusingly, this arrow is often called a (geometric) vector.

Slide 2/14

Review: Vectors in 2D and 3D	Linear transformations	Rotation	Projection	Translation
$\bigcirc \bullet \bigcirc$	0000	0	00	000

Review: Interpreting 3-vectors geometrically

We can do the same thing for 3-vectors.

• Interpret the entries as coordinates of a point.

• Draw an arrow from the origin to the above point.

There is no standard for which variable corresponds to each axis.

Slide 3/14

Review: Vectors in 2D and 3D	Linear transformations	Rotation	Projection	Translation
00●		O	00	000
Review: scalar m	ultipl and vector	or addition	$n \rightarrow \sigma eom$	etrv

From algebra to geometry

• Multiplying v by a scalar c stretches c by a factor of c.

• Adding v and w gives the new vector obtained by sliding the tail of one vector to the tip of the other.

Slide 4

Review: Vectors in 2D and 3D	Linear transformations	Rotation	Projection	Translation
000	●000	0	00	000

What about matrices?

Linear transformations: the idea

The geometric analog of a matrix isn't an object, but a transformation that acts on vectors (or points).

This idea will be very useful even outside of geometric pictures.

Slide 5/

Examples of linear transformations

- Rotations
- Reflections
- Projections
- Many more!

- The input v of T_A is a vector whose height must be width(A).
- The output of T_A is a vector, Av, whose height is height(A).

Slide 6/14

Review: Vectors in 2D and 3D	Linear transformations	Rotation	Projection	Translation
000	0000	0	00	000

Example

The linear transformation of
$$A := \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 is defined by

$$T_A \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= \begin{bmatrix} x + 2y \\ 3x + 4y \end{bmatrix}$$
 for any x, y

Note that this function linear transformation T_A takes in a 2-vector and returns a 2-vector.

Slide 7/14

Exercise 2
Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
. Find a vector v such that $T_A(v) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
We want $T_A(v) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Find v.
Side rote h order for $T_A(v)$ to make cance,
the product $\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} v$ must be defined.
So the beight of v chould be width $(\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}) = 2$.
Let $v = \begin{bmatrix} x \\ y \end{bmatrix}$. We'll search for x and y.
 $T_A(v) = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} (by definition)$
 $= \begin{bmatrix} x + xy \\ 3x + 4y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
Then $\begin{bmatrix} x + xy \\ 1x + 2y \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 \\ 3x + 4y \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3x + 4y \end{bmatrix}$.
Ret $v = 2R_1 + R_2 \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix} + \frac{1}{2}$.
 $r_v = \begin{bmatrix} 1 & 2 \\ 1 \\ 3x + 4y = 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \frac{1}{2}$.
Somity check
 $T_A([1]) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \frac{1}{2} = \begin{bmatrix} 1 \\ 3x + 4y = 1 \end{bmatrix}$.

Review: Vectors in 2D and 3D	Linear transformations	Rotation	Projection	Translation
000	0000	•	00	000

Many natural geometric transformations are linear.

Example

Let
$$R := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
. Then the linear transformation is
 $T_R \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}$

Geometrically, this takes in a vector and **rotates it** 90° **counterclockwise**.

Slide 9/14

Review: Vectors in 2D and 3D	Linear transformations	Rotation	Projection	Translation
000	0000	0	•0	000

Projections

The projection of a point v onto a line (or a plane) is the closest point to v in that line (or a plane).

Projections are useful in many applications because they give us the closest approximation of v by points on a set.

Slide 10/14

Review: Vectors in 2D and 3D	Linear transformations	Rotation	Projection	Translation
000	0000	0	0	000

A formula for projection

If L is the line through the origin and the point w, then the projection of v onto L is $\frac{v \cdot w}{w} = \frac{v \cdot w}{w}$

Exercise 3

Let *L* be the line in the plane \mathbb{R}^2 through (0,0) and (1,3). **1** Find a formula for the projection of $v = \begin{bmatrix} a & b \end{bmatrix}^{\top}$ onto *L*. **2** Find a matrix *M* so that, for all points v, $= \begin{bmatrix} a \\ b \end{bmatrix}$ *T*_M(v) is the projection of v onto *L The projection of* $V = \begin{bmatrix} a \\ b \end{bmatrix}$ onto *L* is $\underbrace{V \cdot W}_{W \cdot W} W$ Here, $W = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. $\underbrace{V \cdot W = 4 + 3b}_{W \cdot W = 1 \cdot [+33 = 10}$ Slide 11/

Exercise 3

Let L be the line in the plane \mathbb{R}^2 through (0,0) and (1,3). 2 Find a matrix M so that, for all points v, $T_{M}(v)$ is the projection of v onto L Want M so that $T_{M}(v)$ is a projection of $V = \begin{bmatrix} a \\ b \end{bmatrix}$ onto the line L • What size chould M be? - We want T_{M} to take in a 2-vector (a point in \mathbb{R}^2) and to output another 2-vector (a point in \mathbb{R}^2). - So the size of M should be $\frac{2}{1.8} \times \frac{2}{1.8}$ • Want $T_{M}(\begin{bmatrix} a \\ b \end{bmatrix}) = \begin{bmatrix} .1 & .3 \\ .3 & .7 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$ Thus, $M = \begin{bmatrix} .1 & .3 \\ .3 & .7 \end{bmatrix}$

This projection can be written as the linear transformation of the matrix
$$M = \begin{bmatrix} .1 & .3 \\ .3 & .7 \end{bmatrix}$$

Slide 12/14

Slide 13/14

Exercise 4
(a) Let f be the function which translates
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 by 1.
Give a formula for f.
Answer: $f(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x+1 \\ y \end{bmatrix}$
(b) Show that f is not a linear transformation The
for any matrix M.
(Hint: Where does f send the origin?) is the transformed
Answer
Suppose $T_M(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x+1 \\ y \end{bmatrix}$ for some $M = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$.
Then $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+1 \\ y \end{bmatrix}$.
Plugging in $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ c \\ 0 \end{bmatrix}$, we get $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \begin{bmatrix} 0 \\ c \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$
[a.otbo] $= \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
Hence, we have $0 = 1$.
This contradicts the fact that
the number 0 is not equal to the number 1.
Thus, the function f is not a linear transformation
TM for any matrix M.
The end of the argument -
Side: One of the key ideas is contradiction.

Exercise 4
(a) Let f be the function which translates
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 by 1.
Give a formula for f.
Answer: $f(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x+1 \\ y \end{bmatrix}$

(b) Show that f is not a linear transformation Ty for any matrix M.

Answer
Suppose
$$T_{M}(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x+1 \\ y \end{bmatrix}$$
 for some $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
Then $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+1 \\ y \end{bmatrix}$.
Plugging in $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, we get $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0+1 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} a & 0+b & 0 \\ c & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
Hence, we have $0 = 1$.
This contradicts the fact that
the number 0 is not equal to the number 1.
Thus, the function f is not a linear transformation
 T_{M} for any matrix M.

Review: Vectors in 2D and 3D	Linear transformations	Rotation	Projection	Translation
000	0000	0	00	000

As we saw, not every transformation on vectors is linear.

Next time

- What special properties do linear transformations have?
- How can you tell if a transformation is linear?
- If so, how can you write it as T_A for some matrix A?

Slide 14/14