Lecture 9b

Vector Geometry with matrices

Review: Interpreting 2-vectors geometrically

We can visualize 2-vectors in the plane in two ways.

- Interpret the entries as coordinates of a point.

- Draw an arrow from the origin to the above point.

Confusingly, this arrow is often called a (geometric) vector.

Review: Interpreting 3-vectors geometrically

We can do the same thing for 3 -vectors.

- Interpret the entries as coordinates of a point.

- Draw an arrow from the origin to the above point.

There is no standard for which variable corresponds to each axis.

Review: scalar multipl and vector addition \rightarrow geometry

From algebra to geometry

- Multiplying v by a scalar c stretches c by a factor of c .

- Adding v and w gives the new vector obtained by sliding the tail of one vector to the tip of the other.

What about matrices?

Linear transformations: the idea

The geometric analog of a matrix isn't an object, but a transformation that acts on vectors (or points).

This idea will be very useful even outside of geometric pictures.

Examples of linear transformations

- Rotations
- Reflections
- Projections
- Many more!

Given a matrix A, the linear transformation of A is the function

$$
T_{\mathrm{A}}(\mathrm{v})=\mathrm{A} \mathrm{~V}
$$

TA takes in a vector $v^{*} \underbrace{}_{\text {in order for the function }}$ T_{A} to make sense, the product $A_{A V}$ must be defined

- The input v of T_{A} is a vector whose height must be width (A).
- The output of T_{A} is a vector, Av , whose height is height(A).

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 4 & 4 & 5 \\
9 & 1 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right] }=[] \\
& 3 \times 4 \times 1
\end{aligned}
$$

Example

The linear transformation of $A:=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is defined by

$$
\begin{aligned}
T_{\mathrm{A}}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =\left[\begin{array}{c}
x+2 y \\
3 x+4 y
\end{array}\right] \text { for any } x, y
\end{aligned}
$$

Note that this function linear transformation T_{A} takes in a 2 -vector and returns a 2 -vector.

Exercise 2
Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
(a) Evaluate $\underbrace{T_{\mathrm{A}}\left(\left[\begin{array}{c}3 \\ -2\end{array}\right]\right)}, \underbrace{T_{\mathrm{A}}\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)}$, and $\underbrace{T_{\mathrm{A}}\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)}$.
(6) Find a vector v such that $T_{\mathrm{A}}(\mathrm{v})=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(2a) By def, $T_{A}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

$$
\begin{aligned}
& \begin{aligned}
T_{\mathrm{A}}\left(\left[\begin{array}{c}
3 \\
-2
\end{array}\right]\right) & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{c}
3 \\
-2
\end{array}\right]\left\{\begin{aligned}
T_{\mathrm{A}}\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right) & \left.=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right) \quad T_{\mathrm{A}}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
3-4 \\
9-8
\end{array}\right] \\
& =\left[\begin{array}{l}
5 \\
1 \\
3
\end{array}\right]
\end{aligned}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned} \\
& \text { Note: Any linear transformation } \\
& \text { sends a zero vector to } \\
& \begin{array}{l}
\text { a zero vector } \\
\text { (of appropriate height) }
\end{array}
\end{aligned}
$$

Exercise 2
Let $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. (1) Find a vector v such that $T_{\mathrm{A}}(\mathrm{v})=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(2b) We want $T_{A}(v)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Find v.
Side note In order for $T_{A}(V)$ to make sense, the product $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \vee$ must be defined. So the height of v should be width $\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\right)=2$.
Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$. We'll search for x and y.

$$
\begin{aligned}
T_{A}(V) & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \text { (by definition) } \\
& =\left[\begin{array}{c}
x+2 y \\
3 x+4 y
\end{array}\right]
\end{aligned}
$$

Set $T_{A}(v)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Then $\left[\begin{array}{l}x+2 y \\ 3 x+4 y\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

$$
\begin{aligned}
&\left.\begin{array}{r}
x+2 y=1 \\
3 x+4 y=1
\end{array}\right\} \longrightarrow\left[\begin{array}{ll|l}
1 & 2 & 1 \\
3 & 4 & 1
\end{array}\right] \\
& R_{2} \mapsto-3 R_{1}+R_{2}\left[\begin{array}{cc|c}
1 & 2 & 1 \\
0 & -2 & -2
\end{array}\right] \\
&\left.R_{2} \mapsto-\frac{1}{2} R_{2}\left[\begin{array}{ll|l}
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right] \rightarrow \begin{array}{r}
x+2 y=1 \\
y=1
\end{array}\right] \Rightarrow x+2=1 \Rightarrow x=-1
\end{aligned}
$$

$$
\therefore v=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

Sanity check

$$
T_{A}\left(\left[\begin{array}{l}
-1 \\
1
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-1+2 \\
-3+4
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

(b) Find a vector v such that $T_{A}(v)=\left[\begin{array}{l}1 \\ 1\end{array}\right] \cup$

Many natural geometric transformations are linear.

Example

Let $\mathrm{R}:=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Then the linear transformation is

$$
T_{\mathrm{R}}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-y \\
x
\end{array}\right]
$$

Geometrically, this takes in a vector and rotates it 90° counterclockwise.

Projections

The projection of a point v onto a line (or a plane) is the closest point to v in that line (or a plane).

Example: Projection onto a line

Projections are useful in many applications because they give us the closest approximation of v by points on a set.

A formula for projection
If L is the line through the origin and the point w, then this as a matrix multiplication!

Exercise 3
Let L be the line in the plane \mathbb{R}^{2} through $(0,0)$ and $(1,3)$.
(1) Find a formula for the projection of $v=\left[\begin{array}{ll}a & b\end{array}\right]^{\top}$ onto L.
(2) Find a matrix M so that, for all points v, $=\left[\begin{array}{l}a \\ b\end{array}\right]$ $T_{M}(v)$ is the projection of v onto L
3 (1)
\rightarrow The projection of $V=\left[\begin{array}{l}a \\ b\end{array}\right]$ onto L is $\frac{V \cdot \omega}{\omega \cdot \omega} \omega$
Here, $\omega=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.

$$
\begin{aligned}
& v \cdot w=a+3 b \\
& w \cdot w=1 \cdot 1+3.3=10
\end{aligned}
$$

Slide 11/14

The projection of $V=\left[\begin{array}{l}a \\ b\end{array}\right]$ onto L is $\frac{v \cdot \omega}{\omega \cdot \omega} \omega=\underbrace{\frac{a+3 b}{10}\left[\begin{array}{l}1 \\ 3\end{array}\right]}_{\text {a number a vector }}$

$$
\begin{aligned}
\left(\begin{array}{l}
\text { Scalar } \\
\text { multiplication }
\end{array}\right. & =\left[\begin{array}{l}
\frac{a+3 b}{10} \cdot 1 \\
\frac{a+3 b}{10} \cdot 3
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{a}{10}+\frac{3}{10} b \\
\frac{3}{10} a+\frac{9}{10} b
\end{array}\right]
\end{aligned}
$$

The end of part 1

Exercise 3
Let L be the line in the plane \mathbb{R}^{2} through $(0,0)$ and $(1,3)$.
(2) Find a matrix M so that, for all points v, $T_{M}(v)$ is the projection of v onto L

Want M so that $T_{M}(v)$ is a projection of $V=\left[\begin{array}{l}a \\ b\end{array}\right]$ onto the line L

- What size should M be?
- We want T_{M} to take in a 2-vector (a point in \mathbb{R}^{2}) and to output another 2 -vector (a point in \mathbb{R}^{2}).
-So the size of M should be $\frac{2}{2} \times \underbrace{2}_{\text {height of } M}$ with of M

0
Want $T_{M}\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=\left[\begin{array}{l}.1 a+.3 b \\ .3 a+.9 b\end{array}\right]$ from part (1)

$$
M\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{ll}
.1 & .3 \\
.3 & .9
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Thus, $M=\left[\begin{array}{ll}.1 & .3 \\ .3 & .9\end{array}\right]$
This projection can be written as the linear transformation of the matrix $M=\left[\begin{array}{cc}1 & -3 \\ .3 & .9\end{array}\right]$

Not every "natural" transformation on vectors is linear!

Consider the transformation: translation to the right by 1

Not every "natural" transformation on vectors is linear!
Exercise 4
(a) Let f be the function which translates $\left[\begin{array}{l}x \\ y\end{array}\right]$ by 1 . Give a formula for f.
(b) Show that f is not a linear transformation T_{M} for any matrix M.
(Hint: where does f send the origin?)

Exercise 4
(a) Let f be the function which translates $\left[\begin{array}{l}x \\ y\end{array}\right]$ by 1 . Give a formula for f.
Answer: $f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x+1 \\ y\end{array}\right]$
(b) Show that f is not a linear transformation T_{M} for any matrix M. side note:
This is a trick
This is a trick
which we can often

Answer
Suppose $T_{M}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x+1 \\ y\end{array}\right]$ for some $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
Then $\quad\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x+1 \\ y\end{array}\right]$.
plugging in $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, we get $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}0 \\ 0\end{array}\right]=\left[\begin{array}{c}0+1 \\ 0\end{array}\right]$

$$
\left[\begin{array}{l}
a \cdot 0+b \cdot 0 \\
c \cdot 0+d \cdot 0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Hence, we have $0=1$.
This contradicts the fact that
the number O is not equal to the number 1 . Thus, the function f is not a linear transformation
T_{M} for any matrix M.
the end of the argument ~
Side: One of the key ideas is contradiction.
note:

Exercise 4 Use this page as a template to answer
Exercise 4 similar questions later
(a) Let f be the function which translates $\left[\begin{array}{l}x \\ y\end{array}\right]$ by 1 .

Give a formula for f.
Answer: $f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x+1 \\ y\end{array}\right]$
(b) Show that f is not a linear transformation T_{M} for any matrix M.

Answer
Suppose $T_{M}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x+1 \\ y\end{array}\right]$ for some $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
Then $\quad\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x+1 \\ y\end{array}\right]$.
plugging in $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, we get $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}0 \\ 0\end{array}\right]=\left[\begin{array}{c}0+1 \\ 0\end{array}\right]$

$$
\left[\begin{array}{l}
a \cdot 0+b \cdot 0 \\
c \cdot 0+d \cdot 0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Hence, we have $0=1$.
This contradicts the fact that
the number O is not equal to the number 1 . Thus, the function f is not a linear transformation T_{M} for any matrix M.

As we saw, not every transformation on vectors is linear.
Next time

- What special properties do linear transformations have?
- How can you tell if a transformation is linear?
- If so, how can you write it as T_{A} for some matrix A ?

