Lecture 9a

Vector Geometry




So far, we've focused on algebraic computations.
From now on, we shift focus to concepts and intuition.

Lecture 9 and 10

Visualizing vectors of height 2 and 3 geometrically, and translating
ideas from the class so far into geometry.




Vectors in 2D and 3D
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Interpreting 2-vectors geometrically

We can visualize 2-vectors in the plane in two ways.

® \We can interpret the entries as coordinates of a point.

[2] ...becomes... 31 @ (2a3)

3

2

® \We can draw an arrow from the origin to the above point.

[2] ...becomes... 2 (233)

3

‘ 2.

Confusingly, this arrow is often called a (geometric) vector.




Vectors in 2D and 3D
(o] le}

Interpreting 3-vectors geometrically

We can do the same thing for 3-vectors.

® \We can interpret the entries as coordinates of a point.

z

1
2 ...becomes... (1,2,3)
3

X

® \We can draw an arrow from the origin to the above point.

1
5 ...becomes... (]_,2,3)
3

X
o

There is no standard for which variable corresponds to each axis. )




Vectors in 2D and 3D
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Interpreting bigger vectors geometrically?

As 3D people, you can't visualize 4-dimensional space or higher
directly. So we can't visualize larger vectors geometrically.

That said, we can run the intuition the other way, and use our
algebraic knowledge of vectors to understand higher dimensional
space.




Sketching linear systems
@0
Exercise 1(a)

Draw all solutions to the following system of linear equations.
X+y=3
x—y=1

y=1

Exercise 1(b)

Draw all solutions to the following system of linear equations.
xX+y=3
x—y=1
x+y=1

Exercise 1(c)

Draw all solutions to the following system of linear equations.
xX+y=3

—Xx —y=-3

2x+2y =06




Sketching linear systems
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X+y=36 )=-Xt3 XxX+y=3 x+y=3
x—y=1S732 x—y=1 —x—y=-3
y=1 x+y=1 2X +2y =06

[0,2) /
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Sketching linear systems
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xX+y=3 X+y =36 y=-Xt3 X+y=13
x—y=1 x—y =175 —~x—-y=-3
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Sketching linear systems
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x+y=3 xX+y=3 y=-Xt3 & x+y =3
X—y= X—y = Y= -x43 & —x—y=-3
y = X+y= Y= -xt3 @ 2x +2y =6
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Shape of a set
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Now is a good time to introduce the idea of sets.

A set is a collection of objects, called elements...which are
typically mathematical objects like numbers, vectors, or points.

Examples of sets

e The set of all cats in Oklahoma — # fi~ife c=®

o cndcntfe se‘t
® The set of all even integers — 4" ° tént &

_ (A LS
® The set of solutions to a system of linear equations . rave
. - CNC{'( ont
e~ The set of eigenvalues of a matrix L ele,r?\en-kL
w Tnfinite can \have infroite

® The set of all 2-vectors — * gfr !

m""\j elements j

alwags o it e Set
(an axn erokeTC can have
At ™most v ef'ﬂe"“/”‘(“eg>
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Shape of a set
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Sets can be defined by listing their elements...
{Cq‘£1>6nt2.)..->€ﬂtj} {—172’7}\ {-")—%)—250)2)(")4,8).-.}
)

...parametrizing their elements...

1—2t 1
2| —Fof a
{[ " ] for all numbers t}\ { E T emers k {

...or characterized by a property. i s
: he St <
the set of solutions to x +2y + 3y =6, fnkeqo(s

divisible "3\3 7

No elements?!
A set with no elements is called the empty set.




Shape of a set
(e]e] JeJele)

Graphing sets of vectors

We can visualize a set of 2-vectors or 3-vectors by drawing the
corresponding points in the plane or space, respectively.

97’5*&:”%&5«0«\5 X—|—y:3 X—|—y:3 X—|—y:3
nea
CSLE} x—y=1 x—y=1 —x—y=-3

y=1 x+y=1 2x+2y=6

Solution set

e (2,1) \

N




Shape of a set
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What kinds of shapes can we get as the set of solutions to an SLE?
Let's start with one linear equation.

The shape of solutions to a linear equation

® The set of solutions to a linear equation in 2-variables

=0
ax +by=c ,es X7/
o o 2x+5¢="T
is a line in the plane.

® The set of solutions to a linear equation in 3-variables

ax+by+cz=d ey xtitz=]
or X=SY- T 3

is a plane in space.

We don’t have the vocabulary for cases in higher dimension.

One exception

Technically, 0 =1 is a linear equation whose solutions are empty.




Shape of a set
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The shape of solutions to a system of linear equations

The solution set to a system of linear equations has a fixed shape
that depends on the number of solutions and parameters.

# of solutions Shape
No solutions ~ No points (empty)
[ 0! 01 One solution ~ One point
[a o 12 One parameter A line 47_”(?2’2";50‘(1'{‘__;{;
lff‘jn:; H$ X=1 cet s 1
z2=2
The solufion set s | Two parameters A plane
{ [}ij ’F”:u:w L
o §’°[ L] +L] ‘f::{ch m parameters ?
| L L :

For this reason, the number of parameters needed is called the
dimension of the solution set.




Shape of a set
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The shape of solutions to a system of linear equations

The solution set to a system of linear equations has a fixed shape
that depends on the number of solutions and parameters.
B ! ;];j # of solutions Shape
Let g:i No solutions No points (_emeL:j)h .
PP One solution One point 7 4t en e = o
)t +5=1 One parameter A line _g, drmension of
X= |+£’S ..(/{,\e’ so(u_'('fam
The s° $ion set is cet is 1
e SO
-f—'t—s] ‘F"ZMLV_S
Two parameters A plane | - dimensien <f
‘e solufien
o1 1] et Ts 2
5'[1]{_ [I]"’ o| numbers
g 0 | s
m parameters ?

For this reason, the number of parameters needed is called the
dimension of the solution set.




Shape of a set

O0000e

We will often denote a set by a letter, for example:

Let L be the set of solutions to 2x — 3y = 3.

(2 2
VY e < = _6 ’Qnuqu +

: 2 -Cvr all
=] ; %_\ + t [2'1 nqm\oetrs{:i
o 1
(ke
A few sets come up so often that they have standard names.

Standardized set names

® R is the set of (real) numbers.

e R? is the set of 2-vectors, which we can visualize as the plane.
® RR3 is the set of 3-vectors, which we can visualize as space.

® For any n, R” is the set of n-vectors.

® For any m,n, R™*" is the set of m X n-matrices.




dictionary between algebra and geometry
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We can extend our dictionary between algebra and geometry.

n-dimensional geometry

Many of the formulas from 2D and 3D geometry extend to vectors
of all sizes.

Geometry — algebra

® The length of a vector v := [vl Vo

V] :=\/vf + V5 + "3:\/

® The angle between two vectors v and w can be defined by
VARV

cos(the angle between v and w) =

[v||w]




dictionary between algebra and geometry
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The length of the four-dimensional vector v := IS

= N

lv|=+y/v-v=

Compute the angle between v and v.
Answer:

V-V

cos(| |) =

v{lvi




dictionary between algebra and geometry
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-
The length of the four-dimensional vector v := i IS
~ — _1_
|V|=\/V'v=\/ i e S L3
Compute the angle between v and v.
Answer:
cos| ) = =~
[v]lv]
W N S 0 s ol A
f k25 -7
l : /: C,o&(E]) =) '|
\Ty A <. TL\e_ anole Letwveen V QV\J vV LS Q.




dictionary between algebra and geometry
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Dually, we can try to move algebraic ideas into geometry.

From algebra to geometry

® Multiplying v by a scalar ¢ stretches ¢ by a factor of c.

It ez

ad v [ 1] - :

2V

e Multiplying v by a scalar ¢ stretches ¢ by a factor of c.

I{: (‘/‘:.’—"l

Vi= [‘ '& 1
: Vv

—N




dictionary between algebra and geometry
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Dually, we can try to move algebraic ideas into geometry.

From algebra to geometry

® Multiplying v by a scalar ¢ stretches v by a factor of c.

(N =

® Adding v and w gives the new vector obtained by sliding the
tail of one vector to the tip of the other.

W

V«w‘?




dictionary between algebra and geometry
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Dually, we can try to move algebraic ideas into geometry.

From algebra to geometry

® Multiplying v by a scalar ¢ stretches ¢ by a factor of c.

2v

v |

® Adding v and w gives the new vector obtained by sliding the

tail of one vector to the tip of the other.
_\/

. \J ) "o 1 W
3 (€ Vo
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dictionary between algebra and geometry
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» Today: Vector geometry
» Next time: Matrix algebra to geometry



