Lecture 9a

Vector Geometry

So far, we've focused on algebraic computations.
From now on, we shift focus to concepts and intuition.
Lecture 9 and 10
Visualizing vectors of height 2 and 3 geometrically, and translating ideas from the class so far into geometry.

Interpreting 2-vectors geometrically

We can visualize 2-vectors in the plane in two ways.

- We can interpret the entries as coordinates of a point.

- We can draw an arrow from the origin to the above point.

$$
\left[\begin{array}{l}
2 \\
3
\end{array}\right] \xrightarrow{\ldots . \text { becomes... }} \xrightarrow[2]{3-\nearrow_{2}^{(2,3)}}
$$

Confusingly, this arrow is often called a (geometric) vector.

Interpreting 3-vectors geometrically

We can do the same thing for 3 -vectors.

- We can interpret the entries as coordinates of a point.

- We can draw an arrow from the origin to the above point.

There is no standard for which variable corresponds to each axis.

Interpreting bigger vectors geometrically?

As 3D people, you can't visualize 4-dimensional space or higher directly. So we can't visualize larger vectors geometrically.

That said, we can run the intuition the other way, and use our algebraic knowledge of vectors to understand higher dimensional space.

Exercise 1(a)

Draw all solutions to the following system of linear equations.
$x+y=3$
$x-y=1$

$$
y=1
$$

Exercise 1(b)

Draw all solutions to the following system of linear equations.
$x+y=3$
$x-y=1$
$x+y=1$

Exercise 1(c)

Draw all solutions to the following system of linear equations.

$$
\begin{aligned}
x+y & =3 \\
-x-y & =-3 \\
2 x+2 y & =6
\end{aligned}
$$

(16)
slope is -1

$$
\begin{array}{rll}
x+y & =3 \Leftrightarrow y=-x+3 \\
x-y & =1 & x+y=3 \\
y & =1
\end{array} \begin{aligned}
& y=x-1 \\
& \text { slope is } 1
\end{aligned} ~ x-y=1
$$

This system has exactly one solution, $(x, y)=(2,1)$

$$
\begin{gathered}
x+y=3 \\
-x-y=-3
\end{gathered}
$$

$$
2 x+2 y=6
$$

(16)
slope is -1
$x+y=3$
$x-y=1$
$y=1$

$x+y=3 \Leftrightarrow y=-x+3$

$$
x+y=3
$$

$$
x-y=1 \Leftrightarrow \underset{\substack{y=x-1 \\ \text { slope is } 1}}{\substack{x \\ \hline}} \quad-x-y=-3
$$

$$
x+y=1 \Leftrightarrow y=-x+1
$$

$$
2 x+2 y=6
$$

No points are solutions to this system

The solutions are
points $(x, y)=(t,-t+3)$ where t is a number

Slide $-(6)$

Now is a good time to introduce the idea of sets.

Sets

A set is a collection of objects, called elements...which are typically mathematical objects like numbers, vectors, or points.

Examples of sets

- The set of all cats in Oklahoma - a finite set
- The set of all even integers - an infinite set
- The set of solutions to a system of linear equations
- The set of eigenvalues of a matrix
- The set of all 2 -vectors - an infinite can have infinitely many elements
\rangle always a finite set
(an $n \times n$ matrix can have
at most n eigenvalues)

Defining sets

Sets can be defined by listing their elements...
$\{$ cat 1, cat $2, \ldots$, cat $d\}, \quad\{-1,2,7\},\{\ldots,-4,-2,0,2,4,6,8, \ldots\}$
...parametrizing their elements...

$$
\left\{\left[\begin{array}{c}
1-2 t \\
t
\end{array}\right] \text { for all numbers } t\right\}_{1}\left\{2 k \begin{array}{l}
\text { for all } \\
\text { integers } k
\end{array}\right\}
$$

...or characterized by a property.

No elements?!
A set with no elements is called the empty set.

Graphing sets of vectors

We can visualize a set of 2 -vectors or 3 -vectors by drawing the corresponding points in the plane or space, respectively.

Example

system of
línear equations

$$
\begin{array}{ccc}
x+y=3 & x+y=3 & x+y=3 \\
x-y=1 & x-y=1 & -x-y=-3
\end{array}
$$

(SLE)

Solution set

$2 x+2 y=6$

What kinds of shapes can we get as the set of solutions to an SLE? Let's start with one linear equation.

The shape of solutions to a linear equation

- The set of solutions to a linear equation in 2 -variables

$$
\begin{aligned}
& a x+b y=c \quad, \begin{array}{l}
\text { e.g. } x-y=0 \\
\text { or } \\
2 x+5 y=-\pi
\end{array}
\end{aligned}
$$

is a line in the plane.

- The set of solutions to a linear equation in 3 -variables
is a plane in space.

$$
\begin{array}{ll}
a x+b y+c z=d & , \text { eg } x+y+z=1 \\
& \text { or } x-5 y-z=\frac{1}{7}
\end{array}
$$

We don't have the vocabulary for cases in higher dimension.

One exception

Technically, $0=1$ is a linear equation whose solutions are empty.

The shape of solutions to a system of linear equations

The solution set to a system of linear equations has a fixed shape that depends on the number of solutions and parameters.

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 2
\end{array}\right]} \\
& \text { Let } y=t \\
& x-y=0 \Rightarrow x=t \\
& z=2
\end{aligned}
$$

The solution set is

\# of solutions	Shape
No solutions	No points
One solution	One point
One parameter	A line
Two parameters	A plane
m parameters	$?$

For this reason, the number of parameters needed is called the dimension of the solution set.

The shape of solutions to a system of linear equations

The solution set to a system of linear equations has a fixed shape that depends on the number of solutions and parameters.

For this reason, the number of parameters needed is called the dimension of the solution set.

We will often denote a set by a letter, for example:
Let L be the set of solutions to $2 x-3 y=3$.
Then $\left.\begin{array}{rl}L & =\left\{\left[\begin{array}{r}\frac{3}{2}+\frac{3}{2} t \\ t\end{array}\right] \begin{array}{c}\text { for all } \\ \text { numberst }\end{array}\right\}\end{array}\right\}$
A few sets come up so often that they have standard names.

Standardized set names

- \mathbb{R} is the set of (real) numbers.
- \mathbb{R}^{2} is the set of 2 -vectors, which we can visualize as the plane.
- \mathbb{R}^{3} is the set of 3 -vectors, which we can visualize as space.
- For any n, \mathbb{R}^{n} is the set of n-vectors.
- For any $m, n, \mathbb{R}^{m \times n}$ is the set of $m \times n$-matrices.

We can extend our dictionary between algebra and geometry.

n-dimensional geometry

Many of the formulas from 2D and 3D geometry extend to vectors of all sizes.

Geometry \rightarrow algebra

- The length of a vector $v:=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]^{\top}$ is

$$
|\mathrm{v}|:=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots v_{n}^{2}}=\sqrt{v \cdot v}
$$

- The angle between two vectors v and w can be defined by $\cos ($ the angle between v and $w)=\frac{v \cdot w}{|v||w|}$

Example

The length of the four-dimensional vector $v:=\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 1\end{array}\right]$ is
$|v|=\sqrt{v \cdot v}=$

Compute the angle between v and v.
Answer:

$$
\begin{aligned}
\cos (\square) & =\frac{v \cdot v}{|v||v|} \\
& =
\end{aligned}
$$

Example

The length of the four-dimensional vector $v:=$

$\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 1\end{array}\right]$

$$
|v|=\sqrt{v \cdot v}=\sqrt{1^{2}+2^{2}+1^{2}+1^{2}}=\sqrt{7}
$$

Compute the angle between v and v.
Answer:

Dually, we can try to move algebraic ideas into geometry.
From algebra to geometry

- Multiplying v by a scalar c stretches c by a factor of c.

If $c:=2$
and $v=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

- Multiplying v by a scalar c stretches c by a factor of c.

$$
\text { if } \begin{aligned}
& c=-1 \\
& v:=[i]
\end{aligned}
$$

Dually, we can try to move algebraic ideas into geometry.

From algebra to geometry

- Multiplying v by a scalar c stretches v by a factor of c.

$$
c V=\text { ? }
$$

- Adding v and w gives the new vector obtained by sliding the tail of one vector to the tip of the other.

$$
v+w=?
$$

Dually, we can try to move algebraic ideas into geometry.

From algebra to geometry

- Multiplying v by a scalar c stretches c by a factor of c.

- Adding v and w gives the new vector obtained by sliding the tail of one vector to the tip of the other.

- Today: Vector geometry
- Next time: Matrix algebra to geometry

