Lecture 8b

Characteristic Polynomials, second part

Review: Finding eigenvalues and eigenvectors

Recall: Eigenvectors and eigenvalues of a matrix

An eigenvector of an $n \times n$ matrix A is a non-zero vector v with

$$
A v=\lambda v
$$

for some number λ, called the eigenvalue of the eigenvector v.
Note: it's possible that λ is 0 .
Recall: Finding eigenvectors with a given eigenvalue
The λ-eigenvectors of A are the non-zero solutions to the matrix equation

$$
(\mathrm{A}-\lambda \mathrm{Id}) \mathrm{v}=\overrightarrow{0}
$$

Recall: Finding eigenvalues of A

The eigenvalues of A are the roots of the char. poly. $p_{\mathrm{A}}(x)=\operatorname{det}(x \mathrm{Id}-\mathrm{A})$ of A .

Consequences of characteristic polynomials

Fact: A degree n polynomial has at most n distinct roots.
This means ...

Fact A (The number of eigenvalues)

An $n \times n$ matrix has at most n-many distinct eigenvalues.
For the maximum number of distinct eigenvalues, the roots actually determine the polynomial!

Fact B (Char. poly. for n-many distinct eigenvalues)

If an $n \times n$ matrix has n-many distinct eigenvalues, then the eigenvalues determine the characteristic polynomial:

$$
p_{\mathrm{A}}(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{n}\right)
$$

Example

If we know the eigenvalues of

$$
A:=\left[\begin{array}{ccc}
0 & 3 & -1 \\
-1 & 4 & -1 \\
0 & 0 & 2
\end{array}\right]
$$

are $1,2,3$, then we can conclude that...

Example

If we know the eigenvalues of

$$
A:=\left[\begin{array}{ccc}
0 & 3 & -1 \\
-1 & 4 & -1 \\
0 & 0 & 2
\end{array}\right]
$$

are $1,2,3$, then we can conclude that...

$$
p_{\mathrm{A}}(x)=(x-1)(x-2)(x-3)=x^{3}-6 x^{2}+11 x-6
$$

What if there are fewer eigenvalues?

We can try to 'count' eigenvalues with multiplicity, but there are several ways to define this and they do not agree.

We can say a bit more about the coefficients of the char. poly.

The trace of a square matrix

The trace of A, denoted $\operatorname{tr}(A)$, is the sum of the diagonal entries.

Example

$$
\operatorname{tr}\left[\begin{array}{ccc}
0 & 2 & -1 \\
-1 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]=0+3+2=5
$$

We won't use the trace often, but it's very easy to compute and it has several nice properties:

$$
\operatorname{tr}(\mathrm{AB})=\operatorname{tr}(\mathrm{BA}), \quad \operatorname{tr}(\mathrm{A}+\mathrm{B})=\operatorname{tr}(\mathrm{A})+\operatorname{tr}(\mathrm{B})
$$

Fact C (Two notable coefficients of the characteristic polynomial)

Let A be an $n \times n$ matrix. Then

- The coefficient of x^{n} is 1 .
- The coefficient of x^{n-1} is $-\operatorname{tr}(\mathrm{A})$.
- The constant term of $p_{\mathrm{A}}(x)$ is $(-1)^{n} \operatorname{det}(\mathrm{~A})$.

Example

$$
\begin{aligned}
\operatorname{tr}(C)=3+2 \\
=5
\end{aligned} \quad \begin{array}{rlrl}
0 & =\left[\begin{array}{ccc}
0 & 2 & -1 \\
-1 & 3 & 0 \\
0 & 0 & 2
\end{array}\right] & \operatorname{det}(C) & =2 \cdot C_{33} \\
& =2 \cdot(-1)^{3+3}\left|\begin{array}{cc}
0 & 2 \\
-13
\end{array}\right| \\
& =22(2) \\
& & =4
\end{array}
$$

Note that we don't have a nifty trick to describe the 8 .

Recall the factorization when A has n-many distinct eigenvalues.

$$
p_{\mathrm{A}}(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{n}\right)
$$

If we multiply out and label the trace and determinant...

$$
p_{\mathrm{A}}(x)=x^{n}-\underbrace{\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}\right)}_{\operatorname{tr}(\mathrm{A})} x^{n-1}+\cdots+(-1)^{n} \underbrace{\lambda_{1} \lambda_{2} \cdots \lambda_{n}}_{\operatorname{det}(\mathrm{A})}
$$

...we notice a deep fact!

Fact D (Determinant and trace for n-many distinct eigenvalues)

Let A be an $n \times n$ matrix with n-many distinct eigenvalues.

- The determinant of A is the product of the eigenvalues of A.
- The trace of A is the sum of the eigenvalues of A.

This can be extended to all square matrices by counting eigenvalues with multiplicity, but we won't talk about this (yet).

Exercise 5

Find the characteristic polynomial of

$$
A:=\left[\begin{array}{ll}
3 & 1 \\
2 & 4
\end{array}\right]
$$

without computing $\operatorname{det}(x \mathrm{ld}-\mathrm{A})$ directly.

Exercise 6

If we already know that

$$
\left[\begin{array}{ccc}
1 & 3 & 5 \\
0 & 3 & 0 \\
5 & -1 & 1
\end{array}\right]
$$

has three distinct eigenvalues and two of them are -4 and 3 , find the last eigenvalue.

Exercise 5

Find the characteristic polynomial of

$$
A:=\left[\begin{array}{ll}
3 & 1 \\
2 & 4
\end{array}\right]
$$

without computing $\operatorname{det}(x / d-A)$ directly.

$$
\begin{aligned}
& \text { Because } A \text { is a } 2 \times 2 \text { matrix, the characteristic polynomial } \\
& P_{A}(x) \text { is a quadratic polynomial } \\
& p_{A}(x)=a_{2} x^{2}+a_{1} x+a_{0} \\
& \text { Fact C: a. The coefficient of } x^{n} \text { is } 1 \\
& \text { Here } n=2 \text {, so } a_{2}=1 \\
& \text { b. The coefficient of } x^{n-1} \text { is }-\operatorname{tr}(A) \\
& \text { so } a_{1}=-\operatorname{tr}(A) \\
& =-\operatorname{tr}\left[\begin{array}{ll}
3 & 1 \\
2 & 4
\end{array}\right] \\
& =-(3+4) \\
& =-7 \\
& \text { c. The constant term of } P_{A}(x) \text { is }(-1)^{n} \operatorname{det}(A) \\
& \text { which is }(-1)^{2} \operatorname{det}\left[\begin{array}{ll}
3 & 1 \\
2 & 4
\end{array}\right]=1 \cdot(3.4-1.2)=10 \\
& P_{A}(x)=1 x^{2}-7 x+10 \\
& =(x-2)(x-5)
\end{aligned}
$$

Exercise 6

If we already know that

$$
\left[\begin{array}{ccc}
1 & 3 & 5 \\
0 & 3 & 0 \\
5 & -1 & 1
\end{array}\right]
$$

Solution
has three distinct eigenvalues and two of them are -4 and 3 , find the last eigenvalue.

- Since $\left[\begin{array}{ccc}1 & 3 & 5 \\ 0 & 3 & 0 \\ 5 & -1 & 1\end{array}\right]$ has three distinct eigenvalues,

$$
\begin{aligned}
& \text { Fact } D \text { says } \operatorname{det}\left(\left[\begin{array}{lll}
1 & 3 & 5 \\
0 & 3 & 1 \\
5 & -1 & 1
\end{array}\right]\right) \text { equals the product } \\
& \text { of the tree eigenvalues. }
\end{aligned}
$$

- Since two of the eigenvalues are given, the third eigenvalue must be $\frac{\operatorname{det}\left(\left[\begin{array}{ccc}1 & 3 & 5 \\ 0 & 3 & 0 \\ 5 & -1 & 1\end{array}\right]\right)}{(-4) \cdot(3)}$
- $\begin{aligned} \operatorname{det}\left(\left[\begin{array}{ccc}1 & 3 & 5 \\ 0 & 3 & 0 \\ 5 & -1 & 1\end{array}\right]\right) & =3 \cdot c_{22} \\ & =3 \cdot(-1)^{2+2}\left|\begin{array}{rr}1 & 5 \\ 5 & 1\end{array}\right| \\ & =3(1.1-5.5)\end{aligned}$
$=3(-24)$
$=-72$
- the third eigenvalue must be $\frac{\operatorname{det}\left(\left[\begin{array}{ccc}1 & 3 & 5 \\ 0 & 3 & 0 \\ 5 & -1 & 1\end{array}\right]\right)}{(-4) \cdot(3)}=\frac{-72}{(-4)(3)}=6$

