Lecture 8b

Characteristic Polynomials, second part




Review: Finding eigenvalues and eigenvectors

Recall: Eigenvectors and eigenvalues of a matrix

An eigenvector of an n X n matrix A is a non-zero vector v with
Av = \v

for some number X\, called the eigenvalue of the eigenvector v.

Note: it's possible that A is O.

Recall: Finding eigenvectors with a given eigenvalue

The M-eigenvectors of A are the non-zero solutions to the matrix

equation .
(A—Aldv=0

Recall: Finding eigenvalues of A

The eigenvalues of A are the roots of the char. poly.
pa(x) = det(x Id — A) of A.




Consequences of characteristic polynomials

Fact: A degree n polynomial has at most n distinct roots.
This means ...

Fact A (The number of eigenvalues)

An n x n matrix has at most n-many distinct eigenvalues.

For the maximum number of distinct eigenvalues, the roots
actually determine the polynomial!

Fact B (Char. poly. for n-many distinct eigenvalues)

If an n X n matrix has n-many distinct eigenvalues, then the
eigenvalues determine the characteristic polynomial:

pa(x) = (x = A1)(x = A2) -~ (x = An)




If we know the eigenvalues of

0 3 -1
A=|[-1 4 -1
0 0 2

are 1,2.3 , then we can conclude that ...




If we know the eigenvalues of

0 3 -1
A=|[-1 4 -1
0 0 2

are 1,2.3 , then we can conclude that ...

pa(x) = (x —1)(x —2)(x —3) = x> — 6x* + 11x — 6

What if there are fewer eigenvalues?

We can try to ‘count’ eigenvalues with multiplicity, but there are
several ways to define this and they do not agree.




Trace of a matrix
[ ]

We can say a bit more about the coefficients of the char. poly.

The trace of a square matrix

The trace of A, denoted tr(A), is the sum of the diagonal entries.

0 2 -1
tr{—1 3 0| =0+4+3+2=5
0O 0 2

v

We won't use the trace often, but it's very easy to compute and it
has several nice properties:

tr(AB) = tr(BA), tr(A+ B) =tr(A) + tr(B)



Easy-to-compute coefficients of the characteristic polynomial
[

Fact C (Two notable coefficients of the characteristic polynomial)

Let A be an n X n matrix. Then
® The coefficient of x" is 1.
® The coefficient of x"~1 is —tr(A).
® The constant term of pa(x) is (—1)" det(A).

v
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pc(x) = 1x> —5x% + 8x — 4
Note that we don't have a nifty trick to describe the 8.




Sum and product of eigenvalues
[ ]

Recall the factorization when A has n-many distinct eigenvalues.
pa(x) = (x = A1)(x = Az) -+ (x = An)
If we multiply out and label the trace and determinant...

pa(x) =x"— (A1 +do 4+ X)X+ (21)" e A,

\ . 7

trE,A) de;(rA)

...we notice a deep fact!

Fact D (Determinant and trace for n-many distinct eigenvalues)

Let A be an n X n matrix with n-many distinct eigenvalues.

® The determinant of A is the product of the eigenvalues of A.

® The trace of A is the sum of the eigenvalues of A.

This can be extended to all square matrices by counting
eigenvalues with multiplicity, but we won't talk about this (yet).




Exercises
o
Exercise 5

Find the characteristic polynomial of

_[31
b

without computing det(xld — A) directly.

| \

Exercise 6
If we already know that

1 3 5
0 3 O
5 -1 1

has three distinct eigenvalues and two of them are —4 and 3, find
the last eigenvalue.




Exercise 5

Find the characteristic polynomial of

A=

Colution
without computing det(xld — A) directly.
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Exercise 6
If we already know that

1 3 5
0 3 0 Solution

5 -1 1
has three distinct eigenvalues and two of them are —4 and 3, find
the last eigenvalue.
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