Characteristic polynomial

Lecture 8a

Characteristic Polynomials

Review: If λ is a number, find λ -eigenvectors if they exist.

Recall: Eigenvectors and eigenvalues of a matrix

An **eigenvector** of an $n \times n$ matrix A is a non-zero vector v with

 $\mathsf{A} \mathsf{v} = \lambda \mathsf{v}$

for some number λ , called the eigenvalue of the eigenvector v.

By definition, the zero vector is not an eigenvector.

Recall: Finding eigenvectors with a given eigenvalue

The λ -eigenvectors of A are the non-zero solutions to the matrix equation

$$(\mathsf{A} - \lambda \mathsf{Id})\mathsf{v} = \vec{\mathsf{0}}$$

Slide 2/11

Review o●o	Finding eigenvalues 00	Characteristic polynomial
Review last lecture:	Given a number λ , try to	find
λ -eigenvectors.		

Exercise 1

Find all 2-eigenvectors of

$$\begin{bmatrix} 0 & 2 & -1 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Exercise 2

Find all 2-eigenvectors of

$$\begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix}$$

Slide 3/11

Exercise 1 Find all 2-eigenvectors of $\mathbf{A} := \begin{bmatrix} 0 & 2 & -1 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $(A - \lambda Id) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ for $\lambda = 2$ Set $\begin{bmatrix} 0 - 2 & 2 & -1 \\ -1 & 3 - 2 & 0 \\ 0 & 0 & 2 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $\left[\begin{array}{cccc} -2 & 2 & -1 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]$ $\begin{array}{c} \mathbf{k_{2} \mapsto - R_{2}} \\ \mathbf{k_{2} \mapsto - R_{2}} \\ \mathbf{0} \\ \mathbf$ no leading 1: Let y:= t 1st row: -2X + 2y - z = 0 $\implies -2X + 2t - 0 = 0 \implies X = t$ 2nd row: z = 0So X=t . y = t 2 =0

Answer: All 2-eigenvectors of $\begin{bmatrix} 0 & 2 & -1 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ are of the form $\begin{bmatrix} t \\ t \\ 0 \end{bmatrix}$, where t is a nonzero number

Exercise 2 Find all 2-eigenvectors of $A := \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix}$ Set $(A - \lambda \operatorname{Id}) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ for $\lambda = 2$ $\begin{bmatrix} 3-2 & 1 & 0 \\ -1 & 3-2 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \end{bmatrix}$ $R_2 \mapsto R_1 + R_2 \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \end{bmatrix}$ x + y = 0 2y = 0 y = 0

Answer The only solution to
$$(A-2Id)\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
which is a zero vector,
so $\begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix}$ has no 2-eigenvectors.

Eigenvalues are rare and special

A matrix only has eigenvectors for a few eigenvalues (or none).

Eigenvalues of a matrix

The **eigenvalues** of a square matrix A are the numbers λ for -which there exists a λ -eigenvector.

Given a matrix A, how can we find the eigenvalues of A? That is, given A and λ , how can we (easily) tell if λ -eigenvectors exist?

U For example, Ex 2 tells us
that
$$\lambda = 2$$
 is not an eigenvalue of the matrix in Ex 2
Ex 1 tells us
that $\lambda = 2$ is an eigenvalue of the matrix in Ex 1

Slide 4/11

(1)

Observation 1

$$(\mathsf{A} - \lambda \mathsf{Id}) v = \vec{\mathsf{0}}$$

always has at least one solution, the zero vector (which doesn't count because eigenvectors are non-zero by definition).

So, A has a λ -eigenvector if equation (1) has more than one solution. So, λ is an eigenvalue of A if equation (1) has more than one solution.

Observation 2

Since A is square, so is $(A - \lambda Id)$. Therefore,

$$(\mathsf{A} - \lambda \mathsf{Id})\mathbf{v} = \mathbf{0}$$

has a unique solution precisely when $(A - \lambda Id)$ is invertible. Recall: A square matrix is non-invertible if its determinant is zero.

So, λ is an eigenvalue of A if and only if det $(A - \lambda Id) = 0$. Use-ful fact (

Slide 5/11

Characteristic polynomial

Exercise 3

Find the eigenvalues of the matrix

$$A := \begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}$$

by solving the equation det(A - xId) = 0.

Exercise 3 Find the eigenvalues of the matrix $A := \begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}$ by solving the equation det(A - xld) = 0.

Set $0 = \det \begin{bmatrix} 1-\lambda & 5 \\ 5 & 1-\lambda \end{bmatrix}$ $0 = (1-\lambda)(1-\lambda) - (5)(5)$ $= 1 - 2\lambda + \lambda^2 - 25$ $= \lambda^2 - 2\lambda - 24$ $0 = \lambda^2 - 2\lambda - 24$ "Complete the square" $+1^2 = \lambda^2 - 2(1)\lambda + 1^2 - 24$ $1 = (\lambda - 1)^2 - 24$ $25 = (\lambda - 1)^2$ $\lambda - 1 = 5, -5$ $\lambda = 6, -4$

Answer The eigenvalues of
$$\begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}$$
 are 6 and -4.

Our main tool in the previous exercise is an important idea.

Definition: The characteristic polynomial of a square matrix

Given a $n \times n$ matrix A, the function of x

$$p_A(x) := \det(x \operatorname{Id} - A)$$

is a polynomial of degree n, the characteristic polynomial of A.

Example of a characteristic polynomial

If
$$C := \begin{bmatrix} 0 & 2 & -1 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, the characteristic polynomial of C is

$$P_{C}(x) = \begin{vmatrix} x-0 & 2 & -1 \\ -1 & x-3 & 0 \\ 0 & 0 & x-2 \end{vmatrix} = (x-2) \cdot C_{33} = (x-2) \cdot (-1)^{3+3} \begin{vmatrix} x & 2 \\ -1 & x-3 \end{vmatrix}$$

$$= (x-2) \cdot (-1)^{3+3} \begin{vmatrix} x & 2 \\ -1 & x-3 \end{vmatrix}$$

$$= (x-2) \cdot (-1)^{3+3} \begin{vmatrix} x & 2 \\ -1 & x-3 \end{vmatrix}$$

$$= (x-2) \cdot (-1)^{3+3} \begin{vmatrix} x & 2 \\ -1 & x-3 \end{vmatrix}$$

$$= (x-2) \cdot (-1)^{3+3} \begin{vmatrix} x & 2 \\ -1 & x-3 \end{vmatrix}$$

$$= (x-2) \cdot (-1)^{3+3} \begin{vmatrix} x & 2 \\ -1 & x-3 \end{vmatrix}$$

$$= (x-2) \cdot (-1)^{3+3} \begin{vmatrix} x & 2 \\ -1 & x-3 \end{vmatrix}$$

$$= (x-2) \cdot (-1)^{3+3} \begin{vmatrix} x & 2 \\ -1 & x-3 \end{vmatrix}$$

$$= (x-2) \cdot (-1)^{3+3} \begin{vmatrix} x & 2 \\ -1 & x-3 \end{vmatrix}$$

$$= (x-2) \cdot (-1)^{3+3} \begin{vmatrix} x & 2 \\ -1 & x-3 \end{vmatrix}$$

Slide 7/11

Our main tool in the previous exercise is an important idea.

Definition: The characteristic polynomial of a square matrix

Given a $n \times n$ matrix A, the function of x

$$\mathcal{D}_{\mathsf{A}}(x) := \mathsf{det}(x \mathsf{ Id} - \mathsf{A})$$

is a polynomial of degree n, the characteristic polynomial of A.

Example of a characteristic polynomial

If $C := \begin{bmatrix} 0 & 2 & -1 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, the characteristic polynomial of C is $p_{C}(x) = \begin{vmatrix} x & -2 & 1 \\ 1 & x - 3 & 0 \\ 0 & 0 & x - 2 \end{vmatrix} = (x - 2)(-1)^{3+3} \begin{vmatrix} x & -2 \\ 1 & x - 3 \end{vmatrix}$ $= (x - 2)(x \cdot (x - 3) + 2)$ $= (x - 2)(x^{2} - 3x + 2)$ $= (x - 1)(x - 2)^{2}$ $= x^{3} - 5x^{2} + 8x - 4$

Slide 7/11

Restate our criterion for eigenvalues (λ is an eigenvalue of A iff det($A - \lambda Id$) = 0) using the characteristic polynomial.

Finding eigenvalues of A

The eigenvalues of A are the roots of the char. poly. $p_A(x)$ of A.

Exercise 4(a)

Find the eigenvalues of the following matrix.

$$A = \left[\begin{array}{rrr} 4 & -2 \\ -1 & 3 \end{array} \right]$$

Slide 8/11

Review

Finding eigenvalues

Characteristic polynomial

Exercise 4(a) solution

The characteristic polynomial of
$$A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$
 is

$$C_{A}(x) = \det (x \ ld - A)$$

$$= \det (\begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} - \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix})$$

$$= \det (\begin{bmatrix} x-4 & 2 \\ 1 & x-3 \end{bmatrix})$$

$$= (x-4)(x-3) - 2$$

$$= x^{2} - 7x + 10$$

$$= (x-2)(x-5)$$
The roots of $C_{A}(x)$ are 2 and 5.
So A has eigenvalues 2 and 5

Slide 9/11

Review 000 Finding eigenvalues

Characteristic polynomial

Exercise 4(a) solution

The characteristic polynomial of
$$A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$
 is

$$c_A(x) = \det(x \ ld - A)$$

$$= \det\left(\begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} - \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}\right)$$

$$= \det\left[\begin{array}{cc} x - 4 & 2 \\ 1 & x - 3 \end{bmatrix}$$

$$= (x - 4)(x - 3) - 2$$

$$= x^2 - 7x + 10$$

$$= (x - 2)(x - 5).$$

So A has eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 5$.

Slide 9/11

Recall how to find eigenvectors

The λ -eigenvectors v of A are the nonzero solutions to the matrix equation $(\lambda I - A)v = \vec{0}$.

Exercise 4(b)

Find all eigenvectors of
$$A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$
.

Exercise 4(b) solution

To find the 2-eigenvectors of A, solve $(2Id - A)v = \vec{0}$:

$$\begin{bmatrix} -2 & 2 & | & 0 \\ 1 & -1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & | & 0 \\ -2 & 2 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{\mathsf{x}} \xrightarrow{\mathsf{z}} \xrightarrow{\mathsf{y}}$$

The eigenvectors with eigenvalue 2 are

$$\left[\begin{array}{c}t\\t\end{array}\right] = t \left[\begin{array}{c}1\\1\end{array}\right] \text{ where } t \text{ is a nonzero number }.$$

Slide 11/11

Exercise 4(b) solution

To find the 2-eigenvectors of A, solve $(2Id - A)v = \vec{0}$:

$$\begin{bmatrix} -2 & 2 & | & 0 \\ 1 & -1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & | & 0 \\ -2 & 2 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{\mathsf{x}} = \mathsf{Y}$$

The eigenvectors with eigenvalue 2 are

$$\left[egin{array}{c} t \\ t \end{array}
ight] = t \left[egin{array}{c} 1 \\ 1 \end{array}
ight]$$
 where t is a nonzero number .

To find the 5-eigenvectors of A, solve $(5Id - A)v = \vec{0}$:

$$\begin{bmatrix} 5-4 & 2\\ 1 & 5-3 \end{bmatrix} \begin{pmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & | & 0\\ 1 & 2 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & | & 0\\ 0 & 0 & | & 0 \end{bmatrix} \quad x = -2y$$

The 5-eigenvectors of A are

$$\begin{bmatrix} -2s \\ s \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
 where *s* is a nonzero number.

Slide 11/11