Lecture 8a

Characteristic Polynomials

Recall: Eigenvectors and eigenvalues of a matrix
An eigenvector of an $n \times n$ matrix A is a non-zero vector v with

$$
A v=\lambda v
$$

for some number λ, called the eigenvalue of the eigenvector v.
By definition, the zero vector is not an eigenvector.

Recall: Finding eigenvectors with a given eigenvalue

The λ-eigenvectors of A are the non-zero solutions to the matrix equation

$$
(\mathrm{A}-\lambda \mathrm{Id}) \mathrm{v}=\overrightarrow{0}
$$

Review last lecture: Given a number λ, try to find λ-eigenvectors.

Exercise 1

Find all 2-eigenvectors of

$$
\left[\begin{array}{ccc}
0 & 2 & -1 \\
-1 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Exercise 2
Find all 2-eigenvectors of

$$
\left[\begin{array}{cc}
3 & 1 \\
-1 & 3
\end{array}\right]
$$

Exercise 1
Find all 2-eigenvectors of

$$
A:=\left[\begin{array}{ccc}
0 & 2 & -1 \\
-1 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Set

$$
\begin{aligned}
& \left(A-\lambda[d)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { for } \lambda=2\right. \\
& {\left[\begin{array}{ccc}
0-2 & 2 & -1 \\
-1 & 3-2 & 0 \\
0 & 0 & 2-2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc|c}
-2 & 2 & -1 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& R_{2} \mapsto-2 R_{2}\left[\begin{array}{ccc|c}
-2 & 2 & -1 & 0 \\
2 & -2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& R_{2} \mapsto R_{1}+R_{2}\left[\begin{array}{ccc|c}
-2 & 2 & -1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \begin{aligned}
& R_{2} \mapsto-R_{2}\left[\begin{array}{ccc|c}
-2 & 2 & -1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \text { no leading 1: Let } y:=t
\end{aligned} \\
& \left.\begin{array}{rl}
\text { dst row: }-2 x+2 y-z & =0 \\
\text { end row: } \quad z & =0
\end{array}\right\} \Rightarrow-2 x+2 t-0=0 \Rightarrow x=t \\
& \text { So } x=t \\
& y=t \\
& z=0
\end{aligned}
$$

Answer: All 2-eigenvectors of $\left[\begin{array}{ccc}0 & 2 & -1 \\ -1 & 0 \\ 0 & 0 & 2\end{array}\right]$ are of the form $\left[\begin{array}{c}t \\ t \\ 0\end{array}\right]$, where t is a nonzero number

Exercise 2
Find all 2-eigenvectors of

$$
A:=\left[\begin{array}{cc}
3 & 1 \\
-1 & 3
\end{array}\right]
$$

Set $(A-\lambda I d)\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ for $\lambda=2$

$$
\left.\begin{array}{c}
{\left[\begin{array}{cc|c}
3-2 & 1 & 0 \\
-1 & 3-2 & 0
\end{array}\right]} \\
{\left[\begin{array}{cc|c}
1 & 1 & 0 \\
-1 & 1 & 0
\end{array}\right]} \\
R_{2} \mapsto R_{1}+R_{2}\left[\begin{array}{cc|c}
1 & 1 & 0 \\
0 & 2 & 0
\end{array}\right] \\
x+y=0 \\
2 y=0
\end{array}\right\} \quad \begin{aligned}
& x=0 \\
& y=0
\end{aligned}
$$

Answer The only solution to $(A-2 I d)\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad$ is $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ which is a zero vector, so $\left[\begin{array}{cc}3 & 1 \\ -1 & 3\end{array}\right]$ has no 2 -eigenvectors.

Eigenvalues are rare and special

A matrix only has eigenvectors for a few eigenvalues (or none).

Eigenvalues of a matrix

The eigenvalues of a square matrix A are the numbers λ for which there exists a λ-eigenvector.

Given a matrix A, how can we find the eigenvalues of A ? That is, given A and λ, how can we (easily) tell if λ-eigenvectors exist?

For example, Ex 2 tells us

$$
\begin{aligned}
& \text { example, Ex } 2 \text { tells us } \\
& \text { that } \lambda=2 \text { is not an eigenvalue of the matrix in } E \times 2
\end{aligned}
$$

$$
\text { Ex } 1 \text { tells us }
$$

that $\lambda=2$ is an eigenvalue of the matrix in $E x 1$

Observation 1

$$
\begin{equation*}
(\mathrm{A}-\lambda \mathrm{Id}) v=\overrightarrow{0} \tag{1}
\end{equation*}
$$

always has at least one solution, the zero vector (which doesn't count because eigenvectors are non-zero by definition).

So, A has a λ-eigenvector if equation (1) has more than one solution. So, λ is an eigenvalue of A if equation (1) has more than one solution.

Observation 2

Since A is square, so is $(A-\lambda I d)$. Therefore,

$$
(\mathrm{A}-\lambda \mathrm{I} \mathrm{~d}) v=\overrightarrow{0}
$$

has a unique solution precisely when ($\mathrm{A}-\lambda \mathrm{ld}$) is invertible.
Recall: A square matrix is non-invertible iffits determinant is zero.
So, λ is an eigenvalue of A if and only if $\operatorname{det}(A-\lambda I d)=0$.
useful fact!

Exercise 3

Find the eigenvalues of the matrix

$$
A:=\left[\begin{array}{ll}
1 & 5 \\
5 & 1
\end{array}\right]
$$

by solving the equation $\operatorname{det}(A-x I d)=0$.

Exercise 3
Find the eigenvalues of the matrix

$$
A:=\left[\begin{array}{ll}
1 & 5 \\
5 & 1
\end{array}\right]
$$

by solving the equation $\operatorname{det}(A-x I d)=0$.
λ is an eigenvalue of $\left[\begin{array}{ll}1 & 5 \\ 5 & 1\end{array}\right]$ if and only if $\operatorname{det}\left(\begin{array}{cc}1-\lambda & 5 \\ 5 & 1-\lambda\end{array}\right)=0$.

$$
\text { Set } \begin{aligned}
0 & =\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 5 \\
5 & 1-\lambda
\end{array}\right] \\
0 & =(1-\lambda)(1-\lambda)-(5)(5) \\
& =1-2 \lambda+\lambda^{2}-25 \\
& =\lambda^{2}-2 \lambda-24 \\
0 & =\lambda^{2}-2 \lambda-24 \\
+1^{2} & =\underbrace{\lambda^{2}-2(1) \lambda+1^{2}}-24 \\
1 & =(\lambda-1)^{2}-24 \\
25 & =(\lambda-1)^{2} \\
& \lambda-1=5,-5 \\
& \lambda=6,-4
\end{aligned}
$$

"Complete the square"

Answer The eigenvalues of $\left[\begin{array}{ll}1 & 5 \\ 5 & 1\end{array}\right]$ are 6 and -4 .

Our main tool in the previous exercise is an important idea.
Definition: The characteristic polynomial of a square matrix
Given a $n \times n$ matrix A, the function of x

$$
p_{\mathrm{A}}(x):=\operatorname{det}(x \mathrm{Id}-\mathrm{A})
$$

is a polynomial of degree n, the characteristic polynomial of A.
Example of a characteristic polynomial
If $C:=\left[\begin{array}{ccc}0 & 2 & -1 \\ -1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right]$, the characteristic polynomial of C is

$$
\begin{aligned}
P_{c}(x)=\left|\begin{array}{ccc}
x-0 & 2 & -1 \\
-1 & x-3 & 0 \\
0 & 0 & x-2
\end{array}\right|=(x-2) \cdot C_{33} & =(x-2) \cdot(-1)^{3+3}\left|\begin{array}{cc}
x & 2 \\
-1 & x-3
\end{array}\right| \\
& =(x-2) \cdot \quad 1 \cdot(x \cdot(x-3)+2) \\
& =(x-2)\left(x^{2}-3 x+2\right) \\
& =(x-2)(x-1)(x-2) \\
& =(x-1)(x-2)^{2} \\
& =x^{3}-5 x^{2}+8 x-4
\end{aligned}
$$

Our main tool in the previous exercise is an important idea.

Definition: The characteristic polynomial of a square matrix

Given a $n \times n$ matrix A, the function of x

$$
p_{\mathrm{A}}(x):=\operatorname{det}(x \mathrm{Id}-\mathrm{A})
$$

is a polynomial of degree n, the characteristic polynomial of A.

Example of a characteristic polynomial

If $C:=\left[\begin{array}{ccc}0 & 2 & -1 \\ -1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right]$, the characteristic polynomial of C is

$$
\begin{aligned}
p_{\mathrm{C}}(x)=\left|\begin{array}{ccc}
x & -2 & 1 \\
1 & x-3 & 0 \\
0 & 0 & x-2
\end{array}\right| & =(x-2)(-1)^{3+3}\left|\begin{array}{cc}
x & -2 \\
1 & x-3
\end{array}\right| \\
& =(x-2)(x \cdot(x-3)+2) \\
& =(x-2)\left(x^{2}-3 x+2\right) \\
& =(x-1)(x-2)^{2} \\
& =x^{3}-5 x^{2}+8 x-4
\end{aligned}
$$

Restate our criterion for eigenvalues (λ is an eigenvalue of A iff $\operatorname{det}(A-\lambda / d)=0)$ using the characteristic polynomial.

Finding eigenvalues of A

The eigenvalues of A are the roots of the char. poly. $p_{A}(x)$ of A.

Exercise 4(a)

Find the eigenvalues of the following matrix.

$$
A=\left[\begin{array}{rr}
4 & -2 \\
-1 & 3
\end{array}\right]
$$

Exercise 4(a) solution
The characteristic polynomial of $A=\left[\begin{array}{rr}4 & -2 \\ -1 & 3\end{array}\right]$ is

$$
\begin{aligned}
& C_{A}(x)=\operatorname{det}(x \mid d-A) \\
& =\operatorname{det}\left(\left[\begin{array}{ll}
x & 0 \\
0 & x
\end{array}\right]-\left[\begin{array}{cc}
4 & -2 \\
-1 & 3
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{cc}
x-4 & 2 \\
1 & x-3
\end{array}\right]\right) \\
& =(x-4)(x-3)-2 \\
& =x^{2}-7 x+10 \\
& =(x-2)(x-5)
\end{aligned}
$$

The roots of $C_{A}(x)$ are 2 and 5 .
So A has eigenvalues 2 and 5

Exercise 4(a) solution

The characteristic polynomial of $A=\left[\begin{array}{rr}4 & -2 \\ -1 & 3\end{array}\right]$ is

$$
\begin{aligned}
c_{A}(x) & =\operatorname{det}(x \text { Id }-A) \\
& =\operatorname{det}\left(\left[\begin{array}{ll}
x & 0 \\
0 & x
\end{array}\right]-\left[\begin{array}{rr}
4 & -2 \\
-1 & 3
\end{array}\right]\right) \\
& =\operatorname{det}\left[\begin{array}{cc}
x-4 & 2 \\
1 & x-3
\end{array}\right] \\
& =(x-4)(x-3)-2 \\
& =x^{2}-7 x+10 \\
& =(x-2)(x-5) .
\end{aligned}
$$

So A has eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=5$.

Recall how to find eigenvectors

The λ-eigenvectors v of A are the nonzero solutions to the matrix equation $(\lambda I-A) v=\overrightarrow{0}$.

Exercise 4(b)

Find all eigenvectors of $A=\left[\begin{array}{rr}4 & -2 \\ -1 & 3\end{array}\right]$.

Exercise 4(b) solution

To find the 2-eigenvectors of A, solve $(2 l d-A) v=\overrightarrow{0}$:

$$
\left[\begin{array}{rr|r}
-2 & 2 & 0 \\
1 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -1 & 0 \\
-2 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad x=y
$$

The eigenvectors with eigenvalue 2 are

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { where } t \text { is a nonzero number }
$$

Exercise 4(b) solution

To find the 2-eigenvectors of A, solve $(2 / d-A) v=\overrightarrow{0}$:

$$
\left[\begin{array}{rr|r}
-2 & 2 & 0 \\
1 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -1 & 0 \\
-2 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad x=y
$$

The eigenvectors with eigenvalue 2 are

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { where } t \text { is a nonzero number }
$$

To find the 5-eigenvectors of A, solve $(5 / d-A) v=\overrightarrow{0}$:

$$
\left[\begin{array}{cc}
5-4 & 2 \\
1 & 5-3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad\left[\begin{array}{ll|l}
1 & 2 & 0 \\
1 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \quad x=-2 y
$$

The 5-eigenvectors of A are

$$
\left[\begin{array}{r}
-2 s \\
s
\end{array}\right]=s\left[\begin{array}{r}
-2 \\
1
\end{array}\right] \text { where } s \text { is a nonzero number. }
$$

