Eigenvectors

Finding a fixed vector

Given a matrix A, can you find \vec{x} such that

$$
\mathrm{A} \vec{x}=\vec{x} ?
$$

That is, can you find a vector \vec{x} which is sent to itself when multiplied by A? Such a vector is called a fixed vector of A.

Exercise 6

$$
A:=\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & -1 \\
1 & 3 & -2
\end{array}\right]
$$

Find all the vectors \vec{x} such that $\mathrm{A} \vec{x}=\vec{x}$.

Exercise 6

$$
A:=\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & -1 \\
1 & 3 & -2
\end{array}\right]
$$

Find all the vectors \vec{x} such that $\mathrm{A} \vec{x}=\vec{x}$.
Solution

$$
\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & -1 \\
1 & 3 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

$$
\begin{aligned}
& 2 x=x \\
& \left.\begin{array}{l}
x+2 y-z=y \\
x+3 y-2 z=z
\end{array}\right\} \\
& \left.\begin{array}{ll}
x & =0 \\
x+y-z & =0 \\
x+3 y-3 z & =0
\end{array}\right\} \\
& {\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
1 & 1 & -1 & 0 \\
1 & 3 & -3 & 0
\end{array}\right]\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 3 & -3 & 0
\end{array}\right] \quad\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& R_{2} \mapsto-R_{1}+R_{2} \quad R_{3} \mapsto-3 R_{2}+R_{3} \\
& R_{3} \mapsto-R_{1}+R_{3}
\end{aligned}
$$

Ex 6
Answer: The vectors \vec{x} which satisfy $A \vec{x}=\vec{x}$ can be described by $\left[\begin{array}{c}0 \\ t \\ t\end{array}\right]$, for any t.
Sanity check:

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & -1 \\
1 & 3 & -2
\end{array}\right)\left(\begin{array}{l}
0 \\
t \\
t
\end{array}\right)=\left(\begin{array}{c}
0 \\
2 t-t \\
3 t-2 t
\end{array}\right)=\left(\begin{array}{l}
0 \\
t \\
t
\end{array}\right) .
$$

We can generalize this by including a scaling factor.

Exercise 7

$$
A:=\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & -1 \\
1 & 3 & -2
\end{array}\right]
$$

(a) Find all the vectors \vec{x} such that $\mathrm{A} \vec{x}=2 \vec{x}$.
(6.) Find all the vectors \vec{x} such that $\mathrm{A} \vec{x}=3 \vec{x}$.

Exercise 7

$$
A:=\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & -1 \\
1 & 3 & -2
\end{array}\right]
$$

(2) Find all the vectors \vec{x} such that $\mathrm{A} \vec{x}=2 \vec{x}$.

$$
\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & -1 \\
1 & 3 & -2
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=2\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

$$
\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & -1 \\
1 & 3 & -2
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-2\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$$
\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & -1 \\
1 & 3 & -2
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$$
\left[\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & -1 \\
1 & 3 & -2
\end{array}\right]-\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)\right]\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$$
\begin{aligned}
& \text { since matrix } \\
& \text { multiplication } \\
& \text { distributes } \\
& \text { over addition }
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & -1 \\
1 & 3 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 3 & -4
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$$
\left[\begin{array}{lll|l}
1 & 0 & -1 & 0 \\
1 & 3 & -4 & 0
\end{array}\right] R_{2} \mapsto-R_{1}+R_{2}
$$

$$
\left[\begin{array}{lll|l}
1 & 0 & -1 & 0 \\
0 & 3 & -3 & 0
\end{array}\right]
$$

$$
R_{2} \mapsto \frac{1}{3} R_{2}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0
\end{array}\right]} \\
& \text { Let } z=t \\
& y-z=0 \Rightarrow y=t \\
& x-z=0 \Rightarrow x=t
\end{aligned}
$$

Ex7a
Answer: The vectors \vec{x} which satisfy $A \vec{x}=2 \vec{x}$ can be described by $\left(\begin{array}{l}t \\ t \\ t\end{array}\right)$ for any t.
For example, $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is a 2-eigenvector of A.
$\left(\begin{array}{l}\pi \\ \pi \\ \pi\end{array}\right)$ is also a 2 -eigenvector of A.
The matrix A has infinitely many 2 -eigenvectors.

Check:

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & -1 \\
1 & 3 & -2
\end{array}\right)\left(\begin{array}{l}
t \\
t \\
t
\end{array}\right)=\left(\begin{array}{c}
2 t \\
t+2 t-t \\
t+3 t-2 t
\end{array}\right)=\left(\begin{array}{l}
2 t \\
2 t \\
2 t
\end{array}\right)=2\left(\begin{array}{l}
t \\
t \\
t
\end{array}\right)
$$

$$
A:=\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & -1 \\
1 & 3 & -2
\end{array}\right]
$$

(b) Find all the vectors \vec{x} such that $\mathrm{A} \vec{x}=3 \vec{x}$.

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{l}
A-3 I d
\end{array}\right)}_{3 x 3} \underset{3 x 1}{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)}=\underbrace{\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)}_{3 x 1} \\
& \left.\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & -1 \\
1 & 3 & -2
\end{array}\right]-\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right)\right]\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& {\left[\begin{array}{ccc}
-1 & 0 & 0 \\
1 & -1 & -1 \\
1 & 3 & -5
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)} \\
& {\left[\begin{array}{ccc|c}
-1 & 0 & 0 & 0 \\
1 & -1 & -1 & 0 \\
1 & 3 & -5 & 0
\end{array}\right]} \\
& \begin{array}{l}
R_{2} \mapsto R_{1}+R_{2} \\
R_{3} \mapsto R_{1}+R_{3}
\end{array}\left[\begin{array}{ccc|c}
-1 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 \\
0 & 3 & -5 & 0
\end{array}\right] \\
& R_{3} \mapsto 3 R_{2}+R_{3}\left[\begin{array}{ccc|c}
-1 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 \\
0 & 0 & -8 & 0
\end{array}\right] \\
& \text { ard Row: } \quad-8 z=0 \Rightarrow z=0 \\
& \text { end Row: }-y-z=0 \Rightarrow y=0 \\
& \text { inst Row: }-x \quad=0 \Rightarrow x=0
\end{aligned}
$$

Ex 76 Answer: (So A hat no 3 -eigenvectors)

These questions lead to one of the fundamental ideas of this class.

Definition: Eigenvectors and eigenvalues

An eigenvector of a matrix A is a non-zero vector \vec{v} such that

$$
\mathrm{A} \vec{v}=\lambda \vec{v}
$$

for some number λ. The number λ is called the eigenvalue of the eigenvector \vec{v}. (lambda)

We also refer to 'an eigenvector with eigenvalue λ ' as a λ-eigenvector.

Example (from Exercise 7)

$\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is one of the many 2-eigenvectors of $\left[\begin{array}{ccc}2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 3 & -2\end{array}\right]$,
but $\left[\begin{array}{ccc}2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 3 & -2\end{array}\right]$ has no 3 -eigenvector.

- The zero vector is not an eigenvector of any matrix by definition.
- An eigenvalue is a number which may be 0 or nonzero.
- If a matrix is not square, can it have eigenvectors?

Finding eigenvectors with a given eigenvalue

The eigenvectors of A with eigenvalue λ are the non-zero solutions to the homogeneous equation

$$
(A-\lambda I d) \vec{x}=\overrightarrow{0}
$$

Exercise 8

$$
A:=\left[\begin{array}{cc}
4 & -2 \\
-2 & 1
\end{array}\right]
$$

a) Find all the eigenvectors of A with eigenvalue 0 .
b) Find one eigenvector of A with eigenvalue 5 .

$$
A:=\left[\begin{array}{cc}
4 & -2 \\
-2 & 1
\end{array}\right]
$$

a) Find all the eigenvectors of A with eigenvalue 0 .

$$
\begin{aligned}
& {\left[\begin{array}{cc}
4-\lambda & -2 \\
-2 & 1-\lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& \lambda=0 \\
& {\left[\begin{array}{cc}
4 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{cc|c}
4 & -2 & 0 \\
-2 & 1 & 0
\end{array}\right] \quad \text { Initial augmented }} \\
& R_{1} \mapsto \frac{1}{2} R_{1}\left[\begin{array}{cc|c}
2 & -1 & 0 \\
-2 & 1 & 0
\end{array}\right] \\
& R_{2} \mapsto R_{1}+R_{2}\left[\begin{array}{cc|c}
2 & -1 & 0
\end{array}\right]
\end{aligned}
$$

Let $y:=t$

$$
2 x-y=0 \Rightarrow 2 x=t \Rightarrow x=\frac{1}{2} t
$$

Answer The 0 -eigenvectors of A are of the form

$$
\binom{\frac{1}{2} t}{t}=t\binom{\frac{1}{2}}{1}
$$

check

$$
\left[\begin{array}{cc}
4 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{r}
1 / 2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t-2 t \\
-t+t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=0\left[\begin{array}{c}
1 / 2 t \\
t
\end{array}\right]
$$

Exercise 8

$$
A:=\left[\begin{array}{cc}
4 & -2 \\
-2 & 1
\end{array}\right]
$$

a) Find all the eigenvectors of A with eigenvalue 0 .
b) Find one eigenvector of A with eigenvalue 5 .

$$
\begin{aligned}
(A-\lambda I d)\binom{x}{y}=\binom{0}{0} & \\
& \lambda=5\left[\begin{array}{cc|c}
4-\lambda & -2 & 0 \\
-2 & 1-\lambda & 0
\end{array}\right] \\
& R_{1} \mapsto-R_{1}\left[\begin{array}{cc|c}
1 & 2 & 0 \\
-2 & -4 & 0
\end{array}\right] \\
& R_{2} \mapsto \frac{1}{2} R_{2}\left[\begin{array}{cc|c}
1 & -2 & 0
\end{array}\right] \\
& \\
& R_{2} \mapsto R_{1}+R_{2}\left[\begin{array}{cc|c}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \\
\left.\begin{array}{l}
x+2 y=0 \\
\text { Let } y:=t \\
x+2 t
\end{array}\right) & \\
&
\end{aligned}
$$

The 5 -eigenvectors of A are of the form $\binom{-2 t}{t}=t\binom{-2}{1}$ for any t.
Answer $\binom{-2}{1}$ or $\binom{4}{-2}$ works.
Check

$$
\left[\begin{array}{cc}
4 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
-2 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 .-2+-2.1 \\
-2 .-2+1.1
\end{array}\right]=\left[\begin{array}{r}
-10 \\
5
\end{array}\right]=5\left[\begin{array}{c}
-2 \\
1
\end{array}\right] .
$$

Eigenvalues are rare and special

A matrix will only have eigenvectors for a few special eigenvalues.

Next time

How to find the $\lambda \mathrm{s}$ for which a λ-eigenvector exist.
(I hope you like finding roots of polynomials.)

