Cofactors	Cofactor expansion along a row	Cofactor expansion along a column	Strategy	Computing inverse using cofactors
000	00	000	0000	000

Lecture 7a

Cofactors

Cofactors	Cofactor expansion along a row	Cofactor expansion along a column	Strategy	Computing inverse using cofactors
000	00	000	0000	000

Recall: The key properties of the determinant

- () A is invertible if and only if $det(A) \neq 0$.
- (i) If A and B are $n \times n$ matrices, then

 $\det(AB) = \det(A)\det(B)$

Recall: How to compute the determinant

- Approach 1: Use row operations to relate it to a determinant we know.
 - Row operations change determinant in simple ways.
 - The determinant of an upper triangular matrix is the product of diagonal entries.
- Use a formula for the determinants of small matrices.
 - ▶ 2×2 matrices: the determinant is ad bc.
 - ► 3 × 3 matrices: Sarrus' rule.

Cofactors ●00	Cofactor expansion along a row	Cofactor expansion along a column	Strategy 0000	Computing inverse using cofactors

Cofactors

We will learn one more method to calculate determinants.

Definition: Cofactors of a square matrix

The (i, j)th cofactor of A is

 $c_{i,j} := (-1)^{i+j} \begin{pmatrix} \text{the determinant of the matrix obtained by} \\ \text{deleting the } i\text{th row and } j\text{th column of A} \end{pmatrix}$

Example: The (2, 1)-cofactor of a 3×3 matrix

If A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 then $c_{21} = (-1)^{2+1} \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} = (-1)(18 - 24) = 6$

Cofactors	Cofactor expansion along a row	Cofactor expansion along a column	Strategy	Computing inverse using cofactors
000	00	000	0000	000

How to remember the sign of the cofactor

The sign $(-1)^{i+j}$ in the cofactor is positive in the upper left entry, and alternates in a checkerboard pattern.

$$\begin{bmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{bmatrix} \begin{bmatrix} + & - & + & - & + \\ - & + & - & + & - \\ + & - & + & - & + \\ - & + & - & + & - \\ + & - & + & - & + \end{bmatrix}$$

Exercise 1

Compute the (3, 2)-cofactor of the following matrix.

$$\begin{bmatrix} 2 & 3 & 1 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 5 & 1 & 1 \\ 1 & 1 & 2 & 5 \end{bmatrix}$$

Cofactors 00●	Cofactor expansion along a row	Cofactor expansio	n along a column	Strategy Compi 0000 000	uting inverse using cofactors
	Exercise 1 (solutio	n):	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 3 0 2 0 5 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$c_{3,2} = (-$	$\left. 1 ight) ^{3+2} \left egin{matrix} 2 & 1 \ 0 & -1 \ 1 & 2 \ \end{matrix} \right.$	1 3 5	2nd	Col
	= (-	$1) \cdot - egin{pmatrix} 1 & 2 \ 0 & -1 \ 2 & 1 \ \end{pmatrix}$	5 3 1		-
	$= \begin{vmatrix} 1\\0\\0 \end{vmatrix}$	$\begin{array}{c ccc} 2 & 5 \\ -1 & 3 \\ -3 & -9 \end{array}$	$ \begin{bmatrix} R_1 \\ R_2 \\ R_3 \end{bmatrix} \mapsto $	$ \begin{array}{c} R_{1} \\ R_{2} \\ -2R_{1}+R_{3} \end{array} $	does not change the determinant
	= -3	$\begin{vmatrix} 1 & 2 & 5 \\ 0 & -1 & 3 \\ 0 & 1 & 3 \end{vmatrix}$	$ \begin{bmatrix} R_1 \\ R_2 \\ R_3 \end{bmatrix} \vdash $	$\Rightarrow \begin{bmatrix} R_{1} \\ R_{2} \\ -\frac{1}{3}R_{3} \end{bmatrix}$	
	= -3	$\begin{vmatrix} 1 & 2 & 5 \\ 0 & -1 & 3 \\ 0 & 0 & 6 \end{vmatrix}$	$ \begin{bmatrix} R_1 \\ R_2 \\ R_3 \end{bmatrix} \vdash $	$ \neq \begin{bmatrix} R_1 \\ R_2 \\ R_2 + R_3 \end{bmatrix} $	does not change the determinant

Cofactors 00●	Cofactor expansion along a row	Cofactor expansion along a column	Strategy Computing inverse using cofactors
	Exercise 1 (solutio	on): $\begin{bmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$c_{3,2} = (-$	$(-1)^{3+2} egin{pmatrix} 2 & 1 & 1 \ 0 & -1 & 3 \ 1 & 2 & 5 \end{bmatrix}$	2nd col
	= (-	$(-1) \cdot - egin{bmatrix} 1 & 2 & 5 \ 0 & -1 & 3 \ 2 & 1 & 1 \end{bmatrix}$	
	$= \begin{vmatrix} 1\\0\\0 \end{vmatrix}$	$\begin{vmatrix} 2 & 5 \\ -1 & 3 \\ -3 & -9 \end{vmatrix} \qquad \begin{pmatrix} R_1 \\ R_2 \\ R_3 \end{bmatrix} \mapsto$	R2 Change the CR1+R3 determinant
	= -3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Rightarrow \begin{bmatrix} R_{1} \\ R_{2} \\ -\frac{1}{3}R_{3} \end{bmatrix}$
	= -3	$\begin{vmatrix} 1 & 2 & 5 \\ 0 & -1 & 3 \\ 0 & 0 & 6 \end{vmatrix} = -3(1 \cdot -1)$	$(\cdot 6) = \boxed{18}$

Computing det(A) using cofactor expansion

Computing det(A), approach 2: Cofactor expansion

If A is an $n \times n$ matrix, we can compute its determinant as follows. The cofactor expansion of det(A) along the *i*th row is

$$\det(\mathsf{A}) = \sum_{j=1}^{n} a_{ij}c_{ij} = a_{i1}c_{i1} + a_{i2}c_{i2} + a_{i3}c_{i3} + a_{i4}c_{i4} + \dots + a_{in}c_{in}$$

Here, a_{ij} denotes the (i, j)th entry of A.

row i
$$\begin{bmatrix} a_{i,1} & a_{i,2} & \dots & a_{i,n} \end{bmatrix}$$

Example

Cofactor expansion along the 2nd row:

Cofact 000	tors	Cofa 0●	actor e	expans	ion aloi	ng a row	Cofactor expansion along a column Strategy Computing inverse using cofacto	ors
	E>	kam	nple					
	С	ofac	ctor	exp	bansi	ion al	ong the 1st row:	
		1 4 7	2 5 8	3 6 9	=	1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$= 1 \cdot (-3) + 2 \cdot - (-6) + 3 \cdot (-3) = 0$							
				_	_	_		

Example

Cofactor expansion along the 2nd row:

$$\begin{vmatrix} {}^{+}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 4 \cdot - \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} + 5 \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} + 6 \cdot - \begin{vmatrix} 1 & 2 \\ 7 & 9 \end{vmatrix}$$

$$= 4 \cdot -(-6) + 5 \cdot (-12) + 6 \cdot -(-6) = 0$$

Intuitively, we travel along the *i*th row and take the alternating sum of each entry times the determinant of the complement.

Cofactors	Cofactor expansion along a row	Cofactor expansion along a column	Strategy	Computing inverse using cofactors
000	00	● ○ ○	0000	000

Since $det(A^{\top}) = det(A)$, we can use columns instead of rows.

Cofactor expansion along a column

The cofactor expansion of det(A) along the *j*th column is

$$\det(A) = \sum_{i=1}^{n} a_{ij}c_{ij} = a_{1j}c_{1j} + a_{2j}c_{2j} + a_{3j}c_{3j} + \dots + a_{nj}c_{nj}$$

Example

Cofactor expansion along the 2nd column:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 2 \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = 2 \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = 2 \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = 2 \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = 2 \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = 2 \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = 2 \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = 2 \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix}$$

Cofactors	Cofactor expansion along a row	Cofactor expansion along a column	Strategy	Computing inverse using cofactors
000	00	● ○ ○	0000	000

Since $det(A^{\top}) = det(A)$, we can use columns instead of rows.

Cofactor expansion along a column

The cofactor expansion of det(A) along the *j*th column is

$$\det(A) = \sum_{i=1}^{n} a_{ij}c_{ij} = a_{1j}c_{1j} + a_{2j}c_{2j} + a_{3j}c_{3j} + \dots + a_{nj}c_{nj}$$

Example

Cofactor expansion along the 2nd column:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 2 \begin{vmatrix} -i \\ 2 & -i \\ 7 & 9 \end{vmatrix} + 5 \begin{vmatrix} 1 & 3 \\ -i \\ 7 & 9 \end{vmatrix} + 5 \begin{vmatrix} -i \\ 2 & -i \\ 7 & -i \\ 7$$

Cofactors	Cofactor expansion along a row	Cofactor expansion along a column	Strategy	Computing inverse using cofactors
000	00	$\bigcirc \bigcirc \bigcirc$	0000	000

Exercise 2

Find det A for
$$A = \begin{bmatrix} -8 & 1 & 0 & -4 \\ 5 & 7 & 0 & -7 \\ 12 & -3 & 0 & 8 \\ -3 & 11 & 0 & 2 \end{bmatrix}$$
.

Cofactors	Cofactor expansion along a row	Cofactor expansion along a column	Strategy	Computing inverse using cofactors
000	00	000	0000	000

Exercise 2

Find det A for
$$A = \begin{bmatrix} -8 & 1 & 0 & -4 \\ 5 & 7 & 0 & -7 \\ 12 & -3 & 0 & 8 \\ -3 & 11 & 0 & 2 \end{bmatrix}$$
.

Solution.

Using cofactor expansion along column 3, det A = 0.

Fact

If A is an $n \times n$ matrix with a row or column of zeros, then det A = 0.

Cofacto 000	ors Cofactor expansion along a r	row Cofacto 00●	or expans	sion alon	g a co	olumn	Strategy 0000	Computing inverse using cofa	acto
	Exercise 3								
	Compute the determi	nant of							
		[1	-1	7	0	1]			
		0	2	6	0	1			
		7	5	-6	2	4			
		0	0	-1	0	0			
		[1	-1	4	0	3			

Cofact 000	ors Cofactor expansion along a row	Cofactor expansion along a column 00●	Strategy 0000	Computing inverse using cofactor
	Exercise 3			
	Compute the determina	nt of		
	A : =	$\begin{bmatrix} 1^{\dagger} & -1 & 7^{\dagger} & 0 & 1 \\ 0 & 2 & 6 & 0^{\dagger} & 1 \\ 7 & 5 & -6 & 2 & 4 \\ 0 & 0 & -1 & 0 & 0 \\ 1 & -1 & 4 & 0 & 3 \end{bmatrix}$		

Answer

$$det A = a_{3,4} C_{3,4}$$

$$= 2 (-1) \begin{vmatrix} 1 & -1 & 7 & 1 \\ 0 & 2 & 6 & 1 \\ 0 & 0 & -1 & 0 \\ 1 & -1 & 4 & 3 \end{vmatrix}$$

Cofact 000	ors Cofactor expansion along a row	Cofactor expansion along a column	Strategy 0000	Computing inverse using cofacto
	Exercise 3			
	Compute the determina	nt of		
	A:=	$\begin{bmatrix} 1^{\dagger} & -\bar{1} & 7^{\dagger} & \bar{0} & 1 \\ 0 & 2 & 6 & 0^{\dagger} & 1 \\ 7 & 5 & -6 & 2 & 4 \\ 0 & 0 & -1 & 0 & 0 \\ 1 & -1 & 4 & 0 & 3 \end{bmatrix}$		
	<u>Answer</u> $det A = a_{3,4}$	² 3,4		
	= 2	$ \begin{vmatrix} + & -1 & 7 & + & 1 \\ 0 & 2 & 6 & - & 1 \\ 0 & 0 & -1 & 0 \\ 1 & -1 & 4 & 3 \end{vmatrix} $		
	= -2.	(-1)(+1) -1 0 2 1 -1 3		
	= <u>2</u> . 1 1	-1 1 2 1 -1 3		

ofact	ctors Cofactor expansion along a row C	Lofactor expansion along a column	Strategy 0000	Computing inverse using cofacto
	Exercise 3			
	Compute the determinant	of		
	A:=	$\begin{bmatrix} 1^{\text{f}} & -\bar{1} & 7^{\text{f}} & \bar{0} & 1 \\ 0 & 2 & 6 & 0^{\text{f}} & 1 \\ 7 & 5 & -6 & 2 & 4 \\ 0 & 0 & -1 & 0 & 0 \\ 1 & -1 & 4 & 0 & 3 \end{bmatrix}$		
	<u>Answer</u> $det A = a_{3,4} C_{3,4}$	4		
	= 21 -1 0 2 0 0 1 -1	7 1 6 1 		
	$= 2 \cdot \begin{vmatrix} 1 & -1 & 1 \\ 0 & 2 & 1 \\ 1 & -1 & 3 \end{vmatrix}$	5		
	$= 2 \cdot \left[1 \cdot \left \frac{2}{-1} \right \right]$	$+ 0 + \frac{1}{2} \frac{1}{2}$		
	$= 2 \left[(61) \right]$	+(-1.1-2.1)		
	= 2 [6 + 1 = [8]	- [- 2]		

Cofactors	Cofactor expansion along a row	Cofactor expansion along a column	Strategy	Computing inverse using cofactors
000	00	000	0000	000

When to use cofactor expansion?

Cofactor expansion takes advantage of 0s in a fixed row or column.

Exercise 4

Let
$$A = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 5 & 0 & 0 & 7 \\ 0 & 1 & -1 & 0 \\ 3 & 0 & 0 & 2 \end{bmatrix}$$
. Find det A .

Weaknesses of cofactor expansion

Without clever tricks, this is much slower than using row operations.

Cofact 000	tors Cofactor expansion along a row Cofactor expansion along a column Strategy Computing inverse using cofact 00 00 000 000 000	tors
	Exercise 4 (solution)	
	Let $A = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 5 & 0 & 0 & 7 \\ 0 & 1 & -1 & 0 \\ 3 & 0 & 0 & 2 \end{bmatrix}$. Find det A .	
	Cofactor expansion along row 1 yields	
	$det(A) = 0 \cdot c_{11}(A) + 1 \cdot c_{12}(A) + 2 \cdot c_{13}(A) + 1 \cdot c_{14}(A) = 1c_{12}(A) + 2c_{13}(A) + c_{14}(A),$	
	whereas cofactor expansion along, row 3 yields	
	$\det(A) = 0 \cdot c_{31}(A) + 1 \cdot c_{32}(A) + (-1) \cdot c_{33}(A) + 0 \cdot c_{34}(A)$	

$$det(A) = 0 \cdot c_{31}(A) + 1 \cdot c_{32}(A) + (-1) \cdot c_{33}(A) + 0 \cdot c_{34}(A) \\ = 1 \cdot c_{32}(A) + (-1) \cdot c_{33}(A),$$

i.e., in the first case we have to compute three cofactors, but in the second we only have to compute two.

Cofactors	Cofactor expansion along a row	Cofactor expansion along a column	Strategy	Computing inverse using cofactors
000	00	000	0000	000

$$A = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 5 & 0 & 0 & 7 \\ 0 & 1 & -1 & 0 \\ 3 & 0 & 0 & 2 \end{bmatrix}$$
$$\det A = 1c_{32}(A) + (-1)c_{33}(A)$$
$$= 1(-1)^5 \begin{vmatrix} 0 & 2 & 1 \\ 5 & 0 & 7 \\ 3 & 0 & 2 \end{vmatrix} + (-1)(-1)^2$$

Cofactors	Cofactor expansion along a row	Cofactor expansion along a column	Strategy	Computing inverse using cofactors
000	00	000	0000	000

$$A = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 5 & 0 & 0 & 7 \\ 0 & 1 & -1 & 0 \\ 3 & 0 & 0 & 2 \end{bmatrix}$$
$$\det A = 1c_{32}(A) + (-1)c_{33}(A)$$
$$= 1(-1)^5 \begin{vmatrix} 0 & 2 & 1 \\ 5 & 0 & 7 \\ 3 & 0 & 2 \end{vmatrix} + (-1)(-1)^6 \begin{vmatrix} 0 & 1 & 1 \\ 5 & 0 & 7 \\ 3 & 0 & 2 \end{vmatrix}$$

Cofactors	Cofactor expansion along a row	Cofactor expansion along a column	Strategy	Computing inverse using cofactors
000	00	000	0000	000

= (-33)

$$A = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 5 & 0 & 0 & 7 \\ 0 & 1 & -1 & 0 \\ 3 & 0 & 0 & 2 \end{bmatrix}$$

$$\det A = 1c_{32}(A) + (-1)c_{33}(A)$$

$$= 1(-1)^{5} \begin{vmatrix} 0 & 2 & 1 \\ 5 & 0 & 7 \\ 3 & 0 & 2 \end{vmatrix} + (-1)(-1)^{6} \begin{vmatrix} 0 & 1 & 1 \\ 5 & 0 & 7 \\ 3 & 0 & 2 \end{vmatrix}$$

$$= (-1) 2 (-1)^{3} \begin{vmatrix} 5 & 7 \\ 3 & 2 \end{vmatrix} + (-1) 1 (-1)^{3} \begin{vmatrix} 5 & 7 \\ 3 & 2 \end{vmatrix}$$

$$= (-1) 2 (-1)^{3} \begin{vmatrix} 5 & 7 \\ 3 & 2 \end{vmatrix} + (-1) 1 (-1)^{3} \begin{vmatrix} 5 & 7 \\ 3 & 2 \end{vmatrix}$$

$$= (-1) 2 (-1)^{3} + (-1) 1 (-1)^{3} \begin{vmatrix} 5 & 7 \\ 3 & 2 \end{vmatrix}$$

Cofactors	Cofactor expansion along a row	Cofactor expansion along a column	Strategy	Computing inverse using cofactors
000	00	000	0000	000

$$A = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 5 & 0 & 0 & 7 \\ 0 & 1 & -1 & 0 \\ 3 & 0 & 0 & 2 \end{bmatrix}$$

$$et A = 1c_{32}(A) + (-1)c_{33}(A)$$
$$= 1(-1)^5 \begin{vmatrix} 0 & 2 & 1 \\ 5 & 0 & 7 \\ 3 & 0 & 2 \end{vmatrix} + (-1)(-1)^6 \begin{vmatrix} 0 & 1 & 1 \\ 5 & 0 & 7 \\ 3 & 0 & 2 \end{vmatrix}$$
$$= (-1)2(-1)^3 \begin{vmatrix} 5 & 7 \\ 3 & 2 \end{vmatrix} + (-1)1(-1)^3 \begin{vmatrix} 5 & 7 \\ 3 & 2 \end{vmatrix}$$
$$= 2(10 - 21) + 1(10 - 21)$$
$$= 2(-11) + (-11)$$

Cofactors	Cofactor expansion along a row	Cofactor expansion along a column	Strategy	Computing inverse using cofactors
000	00	000	0000	000

Exercise 4 con't

Try computing det
$$\begin{bmatrix} 0 & 1 & 2 & 1 \\ 5 & 0 & 0 & 7 \\ 0 & 1 & -1 & 0 \\ 3 & 0 & 0 & 2 \end{bmatrix}$$
 using cofactor expansion along other convenient rows and columns (column 1, 2, or 3; row 2 or 4).

You should still get det A = -33.

Remarkably, cofactors can also be used to compute matrix inverses!

Classical formula: Compute the inverse of a matrix using cofactors

Let A be an $n \times n$ matrix with non-zero determinant. Then

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} c_{1,1} & c_{2,1} & \cdots & c_{n,1} \\ c_{1,2} & c_{2,2} & \cdots & c_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1,n} & c_{2,n} & \cdots & c_{n,n} \end{bmatrix}$$

The subscripts are not a mistake!

The (i, j)th entry of the inverse is the (j, i)-cofactor of A, divided by the determinant.

Note: If you write a code for computing the inverse of an invertible matrix, you would not use this formula because it's very inefficient (you would need to compute det(A) and also n^2 more $n - 1 \times n - 1$ determinants).

Cofacto 000	rs Cofactor expansion along a row	Cofactor expansion along a column	Strategy 0000	Computing inverse using cofactors ○●○
	Exercise 5			
	(a) Find the first column	of A ⁻¹ , where		
		$A := \begin{bmatrix} 2 & 7 & 1 \\ 1 & 4 & -1 \\ 1 & 3 & 0 \end{bmatrix}$		
	(b) Check your work by c	Somputing AA^{-1} .		

Exercise 5
Solution
$$\vec{A}' = \frac{1}{det(A)}
\begin{bmatrix}
C_{11} & C_{21} & C_{31} \\
C_{12} & C_{22} & C_{32} \\
C_{13} & C_{23} & C_{33}
\end{bmatrix}$$

Compute det (A) by taking the cofactor expansion
along the 1st row:
det (A) =
$$A_{11} C_{11} + A_{12} C_{12} + A_{12} C_{13}$$

 $C_{11} = + \begin{vmatrix} 4 & -1 \\ 3 & 0 \end{vmatrix}$
 $C_{12} = - \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix}$
 $C_{13} = + \begin{vmatrix} 1 & 4 \\ 1 & 3 \end{vmatrix}$
 $= 0 - -3$
 $= -(0 - -1)$
 $= 3 - 4$
 $= -1$

$$det (A) = a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13}$$
$$= 2.3 + 7.-1 + 1.-1$$
$$= 6 - 7 - 1$$
$$= -2$$

a) The 1st column of
$$A^{-1}$$
 is

$$\frac{1}{\det(A)} \begin{bmatrix} C_{11} \\ C_{12} \\ C_{13} \end{bmatrix} = \frac{1}{-2} \begin{bmatrix} 3 \\ -1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} -\frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

b) Check:
$$AA^{-1}$$
 should be $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
So $A \begin{bmatrix} 1 & 5 & 0 & 0 & 1 \end{bmatrix}$
 $\begin{bmatrix} 2 & 7 & 1 \\ 1 & 4 & -1 \\ 1 & 3 & 0 \end{bmatrix} \begin{bmatrix} -\frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 2 & -\frac{1}{2} \\ 1 & -\frac{3}{2} \\ 1 & -\frac$

Cofactors	Cofactor expansion along a row	Cofactor expansion along a column	Strategy	Computing inverse using cofactors
000	00	000	0000	000

Recall: The key properties of the determinant

1 A is invertible if and only if
$$det(A) \neq 0$$
.

(i) If A and B are $n \times n$ matrices, then

 $\det(AB) = \det(A)\det(B)$

Summary: How to compute the determinant

- Approach 1: Use row operations to relate it to an upper triangular matrix.
- Use a formula for the determinants of small matrices.
 - ▶ 2×2 matrices: the determinant is ad bc.
 - 3 × 3 matrices: Sarrus' rule.
- Approach 2 (new): use cofactor expansion