Application to linear system	column operations	General formula	3 imes 3 Sarrus' rule
000	00	0	00

Lecture 6b

Determinants, second part

Application to linear system	column operations	General formula	3 imes 3 Sarrus' rule
000	00	0	00

Last time: The determinant of a square matrix

For each square matrix A, we have a number det(A) which satisfies:

- () A is invertible if and only if $det(A) \neq 0$.
- $\bigoplus \det(AB) = \det(A) \det(B)$
- $\bigoplus \det(Id) = 1$

Compute det(A) by first turning A into an upper triangular matrix and keeping track of how the determinants change.

Goal

• Additional properties of det

```
the determinant of
```

• Sarrus' Rule, a method for computing $^{\prime}a$ 3 \times 3 matrix.

Applio ●00	cation to linear system	column operations 00	General formula O	3 imes 3 Sarrus' rule 00
	Exercise 8			
	Show that there is	a unique solution	to the following sys	stem.
		$x_1 + x_2 + x_3 =$	12	
		$3x_2 =$	$x_1 + x_3$	
		$x_1 + 2x_3 =$	$6 + 2x_2$	
	Use the following equations and com		5	

Appli ●00	cation to linear system	column operations 00	General formula O	3 imes 3 Sarrus' rule 00
	Exercise 8			
	Show that there i	s a unique solution	to the following sys	stem.
		$x_1 + x_2 + x_3 =$	12	
		$3x_2 =$	$x_1 + x_3$	
		$x_1 + 2x_3 =$	$6 + 2x_2$	
	Use the followin	g strategy: Write	it as a svstem of lir	near

Use the following strategy: Write it as a system of linear equations and compute the determinant of the coefficient matrix.

(Answer to Exercise 8) The system can be rewritten as follows.

$$x_1 + x_2 + x_3 = 12$$

$$x_1 - 3x_2 + x_3 = 0$$

$$x_1 - 2x_2 + 2x_3 = 6$$

The coefficient matrix is $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -3 & 1 \\ 1 & -2 & 2 \end{bmatrix}$.

Application to linear system	column operations	General formula	3 imes 3 Sarrus' rule
000	00	0	00

(Answer to Exercise 8 con't) First, we compute the determinant of the coefficient matrix.

$$\begin{vmatrix} R_{2} \mapsto -R_{1} + R_{2} \\ \begin{vmatrix} 1 & 1 & 1 \\ 1 & -3 & 1 \\ 1 & -2 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & -4 & 0 \\ 1 & -2 & 2 \end{vmatrix}$$

$$k_{3} \mapsto -R_{1} + R_{3} \begin{vmatrix} 1 & 1 & 1 \\ 0 & -4 & 0 \\ 0 & -3 & 1 \end{vmatrix}$$

$$R_{2} \mapsto -R_{1} + R_{3} \begin{vmatrix} 1 & 1 & 1 \\ 0 & -4 & 0 \\ 0 & -3 & 1 \end{vmatrix}$$

$$Multiplying a row by c$$

$$multiplies the determinant by c$$

$$R_{3} \mapsto 3R_{2} + R_{3} \\ = -4 \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{vmatrix} = -4 \cdot 1 = -4.$$

Application to linear system	column operations	General formula	3 imes 3 Sarrus' rule 00
00●	00	O	

(Answer to Exercise 8 con't)

Recall Property i of det: M is invertible if and only if $det(M) \neq 0$.

▶ Let $C := \begin{bmatrix} 1 & 1 & 1 \\ 1 & -3 & 1 \\ 1 & -2 & 2 \end{bmatrix}$. Since we det $(C) = -4 \neq 0$, Property i tells us that the inverse C^{-1} exists.

The linear system is equivalent to

$$C\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 12\\ 0\\ 6 \end{bmatrix}.$$

$$C^{-1}C\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = C^{-1}\begin{bmatrix} 12\\ 0\\ 6 \end{bmatrix}$$

$$So\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = C^{-1}\begin{bmatrix} 12\\ 0\\ 6 \end{bmatrix}$$
 gives the unique solution.

We have shown that the system in Exercise 8 has a unique solution.

<u>Remark</u>: The fact that the determinant of the coefficient matrix is non-zero tells us that the linear system has a unique (exactly one) solution. (We don't need to check the constant terms in the system!)

Application to linear system	column operations	General formula	3 imes 3 Sarrus' rule
000	•0	0	00

The determinant of the transpose

$$\mathsf{det}(\mathsf{A}^{\top}) = \mathsf{det}(\mathsf{A})$$

Example								
	1	1	3		1	4	7	
	4	5	6	=	1	5	8	
	7	8	9		3	6	9	

This identity is remarkably useful, since it allows us to deduce new determinant identities from old ones.

Application to linear system	column operations	General formula	3 imes 3 Sarrus' rule
000	0•	0	00

Anything we can do with rows, we can do with columns

We can use the transpose to deduce that column operations change the determinant in simple ways.

Example We can swap two columns by swapping rows in the transpose: 1 1 3 4 5 6 7 8 9

Application to linear system	column operations	General formula	3 imes 3 Sarrus' rule
000	0•	0	00

Anything we can do with rows, we can do with columns

We can use the transpose to deduce that column operations change the determinant in simple ways.

Example

We can swap two columns by swapping rows in the transpose:

Swapping two columns multiplies the determinant by -1.

Application to linear system	column operations	General formula	3 imes 3 Sarrus' rule
000	00	•	00

There is a general formula for the determinant of an $n \times n$ matrix.

Computing determinants: The general formula

If A is an $n \times n$ matrix, then

$$\mathsf{det}(\mathsf{A}) = \sum (-1)^{s(p)} a_{p_1,1} a_{p_2,2} \cdots a_{p_i,i} \cdots, a_{p_n,n}$$

where the sum runs over all ways to list the numbers 1, 2, ..., n in some order as $p_1, p_2, ..., p_n$, and s(p) is the number of pairs i, j such that i < j but $p_i > p_j$.

- This formula lies under the hood of all our previous results.
- It impractical for computation (both for you and for a computer). For a 4 × 4 matrix, it already has 4! = 24 terms!

In practice, you (the student) and computers use more efficient methods to calculate determinants.

Application to linear system	column operations	General formula	3 imes 3 Sarrus' rule
000	00	0	•O

(Only works for 3×3 matrix, but worth knowing about. Often used in the cross product of two 3-vectors.)

Computing det(A), special case for 3×3 ONLY (Sarrus' rule)

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - afh - bdi - ceg$$

Sarrus' rule trick: Copy the first two columns to the right of the matrix: Add the product of the elements in each diagonal.

Then, subtract the product of the elements in each antidiagonal.

The result is the determinant of the original matrix.

Application to linear system	column operations	General formula	3 imes 3 Sarrus' rule
000	00	0	0•

Example using Sarrus' rule

Compute det
$$\left(\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \right)$$
.

Add the product of the elements in each diagonal.

$$\begin{vmatrix} 1 & 2 & 3 & 1 & 2 \\ 4 & 5 & 6 & 4 & 5 & 1 \cdot 5 \cdot 9 + 2 \cdot 6 \cdot 7 + 3 \cdot 4 \cdot 8 = 225 \\ 7 & 8 & 9 & 7 & 8 \end{vmatrix}$$

Then, subtract the product of the elements in each antidiagonal.

The determinant of the original matrix is $|\mathbf{0}|$.