Lecture 5b

Matrix Inverses: algorithm

Last time

- Some but not all matrices have an inverse.
- When an inverse exists, it is unique.
- When the inverse exists, it allows us to rearrange equations.
- In particular, we can solve $A x=b$ for x.

Goal:

- An algorithm to check invertibility and to compute inverses
- Connection between invertibility and rank

A formula for the inverse of a 2×2-matrix

Consider a 2×2-matrix A , as below.

$$
\mathrm{A}:=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

- If $a d-b c \neq 0$, then A is invertible and

$$
\mathrm{A}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]
$$

- If $a d-b c=0$, then A is non-invertible.

The quantity $a d-b c$ is called the determinant of A.
We will generalize determinants to all square matrices.

Exercise 6

(i) Determine whether $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is invertible.
(ii) If A is invertible, compute the inverse using the formula given above.

Exercise 6

(i) Determine whether $A=\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}$ is invertible.
(ii) If A is invertible, compute the inverse using the formula given above.
(i) Since $a d-b c=1 \cdot 4-2 \cdot 3 \neq 0$, the inverse matrix A^{-1} exists.
(ii) The formula for A^{-1} given above is

$$
\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=-\frac{1}{2}\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right]=\left[\begin{array}{rr}
? & ? \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right]
$$

Check: $A A^{-1} \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \equiv A^{-1} A$

Algorithm for finding the inverse of an $n \times n$-matrix

In general, how do we compute inverses, that is, find a solution to $A X=I d$?

Algorithm: Computing inverses with elementary row operations

- Write the augmented matrix [A | Id].
- Perform elementary row operations to transform [A \| Id] into a matrix in row-echelon form (REF).
- If this REF matrix has a leading 1 in every column left of the vertical line, continue using row operations to put it in the form [Id $\mid A^{-1}$].
- Otherwise, A is not invertible.

This method takes a lot of time and we'll learn other ways to find A^{-1}.

Exercise 7

Find, if possible, the inverse of $\left[\begin{array}{rrr}1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2\end{array}\right]$, or show that it doesn't exist.

We apply the algorithm described above.

$$
\left[\begin{array}{rr|rrr}
1 & 0 & -1 & \begin{array}{lll}
1 & 0 & 0 \\
-2 & 1 & 3 \\
-1 & 1 & 2
\end{array} & \underbrace{}_{I d} \\
0 & 1 & 0 \\
0
\end{array}\right] \xrightarrow{2 R_{1}+R_{2}+R_{3}}\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \rightarrow R_{2}+R_{3}
$$

Exercise 7

Find, if possible, the inverse of $\left[\begin{array}{rrr}1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2\end{array}\right]$, or show that it doesn't exist.

We apply the algorithm described above.

$$
\begin{aligned}
& {\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
-2 & 1 & 3 & 0 & 1 & 0 \\
-1 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \xrightarrow[R_{1}+R_{3}]{\rightarrow}\left[\begin{array}{r}
R_{1}+R_{2}
\end{array}\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \rightarrow R_{2}+R_{3}\right.} \\
& {\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 1
\end{array}\right] \underset{-R_{3}}{\rightarrow}\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & -1
\end{array}\right]}
\end{aligned}
$$

Since column 3 has no leading 1 , the algorithm tells us that A has no inverse.

Exercise 8

Let $A=\left[\begin{array}{rrr}3 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 2 & 4\end{array}\right]$. Find the inverse of A, if it exists.
Otherwise, show that it doesn't exist.
Using the algorithm
$[A \mid I d]=\left[\begin{array}{rrr|rrr}3 & 1 & 2 & 1 & 0 & 0 \\ 1 & -1 & 3 & 0 & 1 & 0 \\ 1 & 2 & 4 & 0 & 0 & 1\end{array}\right] \xrightarrow{\stackrel{R_{2}}{R_{1}}}\left[\begin{array}{rrr|rrr}1 & -1 & 3 & 0 & 1 & 0 \\ 3 & 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 4 & 0 & 0 & 1\end{array}\right] \rightarrow$
R_{1}
$-3 R_{1}+R_{2}$
$-R_{1}+R_{3}$$[$

Exercise 8

Let $A=\left[\begin{array}{rrr}3 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 2 & 4\end{array}\right]$. Find the inverse of A, if it exists.
Otherwise, show that it doesn't exist.
Using the algorithm

$\begin{array}{r}R_{1} \\ -3 R_{1}+R_{2} \\ -R_{1}+R_{3}\end{array}\left[\begin{array}{rrr|rrr}1 & -1 & 3 & 0 & 1 & 0 \\ 0 & 4 & -7 & 1 & -3 & 0 \\ 0 & 3 & 1 & 0 & -1 & 1\end{array}\right] \xrightarrow{-R_{3}+R_{2}}\left[\begin{array}{rrr|rrr}1 & -1 & 3 & 0 & 1 & 0 \\ 0 & 1 & -8 & 1 & -2 & -1 \\ 0 & 3 & 1 & 0 & -1 & 1\end{array}\right] \rightarrow-3 R_{2}+R_{3}$

Exercise 8

Let $A=\left[\begin{array}{rrr}3 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 2 & 4\end{array}\right]$. Find the inverse of A, if it exists.
Otherwise, show that it doesn't exist.
Using the algorithm

$$
\begin{aligned}
& {[A \mid I d]=\left[\begin{array}{rrr|rrr}
3 & 1 & 2 & 1 & 0 & 0 \\
1 & -1 & 3 & 0 & 1 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] \quad{ }_{R}^{R_{2}}\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
3 & 1 & 2 & 1 & 0 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] \rightarrow} \\
& \underset{-3}{\substack{R_{1} \\
-R_{1}+R_{2} \\
R_{1}}}\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
0 & 4 & -7 & 1 & -3 & 0 \\
0 & 3 & 1 & 0 & -1 & 1
\end{array}\right]-R_{3}+R_{2}\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 3 & 1 & 0 & -1 & 1
\end{array}\right] \rightarrow \\
& -3 R_{2}+R_{3}\left[\begin{array}{rrr|rrr}
1 & 0 & -5 & 1 & -1 & -1 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 0 & 25 & -3 & 5 & 4
\end{array}\right] \underset{\frac{1}{25} R_{3}}{\rightarrow}\left[\begin{array}{rrr|rrr}
1 & 0 & -5 & 1 & -1 & -1 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 0 & 1 & -\frac{3}{25} & \frac{5}{25} & \frac{4}{25}
\end{array}\right] \xrightarrow{5 R_{3}+R_{1}} \begin{array}{l}
8 R_{3}+R_{2}
\end{array}
\end{aligned}
$$

The algorithm tells us that A is invertible because the columns left of the vertical line has leading i's.

$$
\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & \frac{10}{25} & 0 & -\frac{5}{25} \\
0 & 1 & 0 & \frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\
0 & 0 & 1 & -\frac{3}{25} & \frac{5}{25} & \frac{4}{25}
\end{array}\right]=\left[|d| A^{-1}\right]
$$

Therefore, A^{-1} exists, and

$$
A^{-1}=\left[\begin{array}{rrr}
\frac{10}{25} & 0 & -\frac{5}{25} \\
\frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\
-\frac{3}{25} & \frac{5}{25} & \frac{4}{25}
\end{array}\right]=\frac{1}{25}\left[\begin{array}{rrr}
10 & 0 & -5 \\
1 & -10 & 7 \\
-3 & 5 & 4
\end{array}\right]
$$

Sanity check: compute $A A^{-1}$ and $A^{-1} A$ to double check your answer.

There is a powerful connection between invertibility and rank.

Theorem (Invertibility and rank)

An $n \times n$ matrix is invertible if and only if its rank is n.

Why? (Idea)

- Start with [A \| Id].
- Perform row operations to get to an REF [B|C].
- Since $[B \mid C]$ is in REF, the matrix B is an REF for A.
- By def, the rank of A is the number of leading 1 s of B
- So the rank of A is the number of leading 1 s of $[B \mid C]$ left of the vertical line.

Exercise 9

Determine whether each of the following matrices is invertible (without performing the algorithm).

$$
\text { a.) }\left[\begin{array}{cccc}
1 & 3 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { b. }\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Exercise 9

Determine whether each of the following matrices is invertible (without performing the algorithm).

$$
\text { a.) }\left[\begin{array}{cccc}
1 & 3 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { b. }\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

a.) The matrix is 4×4 and the rank is 4 (since the matrix is in row-echelon form and there are four leading 1s). So the matrix is invertible according to the invertibility-and-rank theorem.
b.) The matrix is 4×4 and the rank is 3 (since the matrix is in row-echelon form and there are three leading 1s). So the matrix is not invertible according to the theorem.

Recap Lecture 5b

- We can detect and find 2×2 inverses with an easy formula.
- We can detect and find larger inverses with a lot of work.
- We can detect invertibility from rank.
- Do required reading hw 5b + suggested pratice
- Next lecture: determinants

