2×2 matrix	$n \times n$ matrix	Invertibility and rank
00	0000	000

Lecture 5b

Matrix Inverses: algorithm

2×2 matrix	$n \times n$ matrix	Invertibility and rank
00	0000	000

Last time

- Some but not all matrices have an inverse.
- When an inverse exists, it is unique.
- When the inverse exists, it allows us to rearrange equations.
- In particular, we can solve Ax = b for x.

Goal:

- An algorithm to check invertibility and to compute inverses
- Connection between invertibility and rank

 $n \times n$ matrix 0000

Finding inverses

A formula for the inverse of a 2×2 -matrix

Consider a 2×2 -matrix A, as below.

$$\mathsf{A} := \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

• If $ad - bc \neq 0$, then A is invertible and

$$\mathsf{A}^{-1} = \frac{1}{\mathsf{a}d - \mathsf{b}c} \begin{bmatrix} d & -\mathsf{b} \\ -\mathsf{c} & \mathsf{a} \end{bmatrix} = \begin{bmatrix} \frac{d}{\mathsf{a}d - \mathsf{b}c} & \frac{-\mathsf{b}}{\mathsf{a}d - \mathsf{b}c} \\ \frac{-\mathsf{c}}{\mathsf{a}d - \mathsf{b}c} & \frac{-\mathsf{a}}{\mathsf{a}d - \mathsf{b}c} \end{bmatrix}$$

• If ad - bc = 0, then A is non-invertible.

The quantity ad - bc is called the **determinant** of A.

We will generalize determinants to all square matrices.

2×2 matrix $0 \bullet$	$n \times n$ matrix 0000	Invertibility and rank		
Exercise 6				
(i) Determine whether $A =$	$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ is invertible.			

(i) Determine whether $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is invertible. (ii) If A is invertible, compute the inverse using the formula given above.

2×2 matrix	$n \times n$ matrix	Invertibility and rank
0•	0000	000

i) Determine whether
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 is invertible.

(ii) If A is invertible, compute the inverse using the formula given above.

(i) Since $ad - bc = 1 \cdot 4 - 2 \cdot 3 \neq 0$, the inverse matrix A^{-1} exists.

(ii) The formula for A^{-1} given above is

$$\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = -\frac{1}{2}\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} ? & ? \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

Check: $AA^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = A^{-1}A$

Algorithm for finding the inverse of an $n \times n$ -matrix

In general, how do we compute inverses, that is, find a solution to $\mathsf{AX}=\mathsf{Id}?$

Algorithm: Computing inverses with elementary row operations

- Write the augmented matrix [A | Id].
- Perform elementary row operations to transform [A | Id] into a matrix in row-echelon form (REF).
- If this REF matrix has a leading 1 in every column left of the vertical line, continue using row operations to put it in the form [Id | A⁻¹].
- Otherwise, A is not invertible.

This method takes a lot of time and we'll learn other ways to find A^{-1} .

2 × 2 matrix 00	n × n ma ⊙●○○	$n \times n$ matrix 0000			ık
Exercise 7					
Find, if possib	A =	$egin{array}{ccc} 1 & 0 \ -2 & 1 \ -1 & 1 \end{array}$	$\begin{bmatrix} -1\\ 3\\ 2 \end{bmatrix}$, o	or show that it	
doesn't exist.	L		_		

We apply the algorithm described above.

$$\begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ -2 & 1 & 3 & | & 0 & 1 & 0 \\ -1 & 1 & 2 & | & 0 & 1 & | \\ A & & Id \end{bmatrix} \xrightarrow{\mathbf{2}R_{1}+R_{2}}_{\mathbf{R}_{1}+\mathbf{R}_{3}} \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 2 & 1 & 0 \\ 0 & 1 & 1 & | & 1 & 0 & 1 \end{bmatrix} \xrightarrow{\mathbf{R}_{2}+R_{3}}_{\mathbf{R}_{1}+\mathbf{R}_{3}}$$

2 × 2 matrix n × 00 000	n matrixInvertibility and rank00000
Exercise 7	
	f $\begin{bmatrix} 1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2 \end{bmatrix}$, or show that it
doesn't exist.	

We apply the algorithm described above.

$$\begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ -2 & 1 & 3 & | & 0 & 1 & 0 \\ -1 & 1 & 2 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{2 R_1 + R_2}_{R_1 + R_3} \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 2 & 1 & 0 \\ 0 & 1 & 1 & | & 1 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 + R_3}_{R_2 + R_3} \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 1 \\ 0 & 1 & 1 & | & 2 & 1 & 0 \\ 0 & 0 & 0 & | & -1 & -1 & 1 \end{bmatrix} \xrightarrow{R_3 + R_3}_{-R_3} \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 2 & 1 & 0 \\ 0 & 0 & 0 & | & 1 & 1 & -1 \end{bmatrix}$$

Since column 3 has no leading 1, the algorithm tells us that A has no inverse.

Let
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 2 & 4 \end{bmatrix}$$
. Find the inverse of A , if it exists.
Otherwise, show that it doesn't exist.

Using the algorithm

$$\begin{bmatrix} A \mid Id \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 \mid 1 & 0 & 0 \\ 1 & -1 & 3 \mid 0 & 1 & 0 \\ 1 & 2 & 4 \mid 0 & 0 & 1 \end{bmatrix} \stackrel{R_2}{\rightarrow} \begin{bmatrix} 1 & -1 & 3 \mid 0 & 1 & 0 \\ 3 & 1 & 2 \mid 1 & 0 & 0 \\ 1 & 2 & 4 \mid 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} R_1 \\ -3 & R_1 + R_2 \\ -R_1 + R_2 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 2 & 4 \end{bmatrix}$$
. Find the inverse of A , if it exists.
Otherwise, show that it doesn't exist.

Using the algorithm

$$\begin{bmatrix} A \mid Id \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 \mid 1 & 0 & 0 \\ 1 & -1 & 3 \mid 0 & 1 & 0 \\ 1 & 2 & 4 \mid 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2} \begin{bmatrix} 1 & -1 & 3 \mid 0 & 1 & 0 \\ 3 & 1 & 2 \mid 1 & 0 & 0 \\ 1 & 2 & 4 \mid 0 & 0 & 1 \end{bmatrix} \rightarrow \frac{R_1}{2} \begin{bmatrix} 1 & -1 & 3 \mid 0 & 1 & 0 \\ 1 & 2 & 4 \mid 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 + R_2} \begin{bmatrix} 1 & -1 & 3 \mid 0 & 1 & 0 \\ 0 & 1 & -8 \mid 1 & -2 & -1 \\ 0 & 3 & 1 \mid 0 & -1 & 1 \end{bmatrix} \xrightarrow{R_3 + R_2} \begin{bmatrix} 1 & -1 & 3 \mid 0 & 1 & 0 \\ 0 & 1 & -8 \mid 1 & -2 & -1 \\ 0 & 3 & 1 \mid 0 & -1 & 1 \end{bmatrix} \xrightarrow{R_3 + R_2} \xrightarrow{R_3 + R_2} \begin{bmatrix} 1 & -1 & 3 \mid 0 & 1 & 0 \\ 0 & 1 & -8 \mid 1 & -2 & -1 \\ 0 & 3 & 1 \mid 0 & -1 & 1 \end{bmatrix} \xrightarrow{R_3 + R_2} \xrightarrow{R_3 + R_3 + R_2} \xrightarrow{R_3 + R_3 + R_2} \xrightarrow{R_3 + R_3 + R$$

Let
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 2 & 4 \end{bmatrix}$$
. Find the inverse of A , if it exists.
Otherwise, show that it doesn't exist.

Using the algorithm

$$\begin{bmatrix} A \mid Id \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 \mid 1 & 0 & 0 \\ 1 & -1 & 3 \mid 0 & 1 & 0 \\ 1 & 2 & 4 \mid 0 & 0 & 1 \end{bmatrix} \xrightarrow{\ell_2} \begin{bmatrix} 1 & -1 & 3 \mid 0 & 1 & 0 \\ 3 & 1 & 2 \mid 1 & 0 & 0 \\ 1 & 2 & 4 \mid 0 & 0 & 1 \end{bmatrix} \rightarrow$$

$$\xrightarrow{\ell_1} \begin{bmatrix} 1 & -1 & 3 \mid 0 & 1 & 0 \\ 0 & 4 & -7 \mid 1 & -3 & 0 \\ 0 & 3 & 1 \mid 0 & -1 & 1 \end{bmatrix} \xrightarrow{\ell_2 \neq \ell_2} \begin{bmatrix} 1 & -1 & 3 \mid 0 & 1 & 0 \\ 0 & 1 & -8 \mid 1 & -2 & -1 \\ 0 & 3 & 1 \mid 0 & -1 & 1 \end{bmatrix} \rightarrow$$

$$\xrightarrow{\ell_2 \neq \ell_2} \begin{bmatrix} 1 & 0 & -5 \mid 1 & -1 & -1 \\ 0 & 1 & -8 \mid 1 & -2 & -1 \\ 0 & 1 & -8 \mid 1 & -2 & -1 \\ 0 & 0 & 25 \mid -3 & 5 & 4 \end{bmatrix} \xrightarrow{\ell_2 \neq \ell_3} \begin{bmatrix} 1 & 0 & -5 \mid 1 & -1 & -1 \\ 0 & 1 & -8 \mid 1 & -2 & -1 \\ -\frac{3}{25} & \frac{5}{25} & \frac{4}{25} \end{bmatrix} \xrightarrow{\ell_3 \neq \ell_2} \xrightarrow{\ell_3 \neq \ell_2} \xrightarrow{\ell_3 \neq \ell_3} \xrightarrow{\ell_3 \neq \ell_3} \xrightarrow{\ell_3 \neq \ell_4} \xrightarrow{\ell_4 \neq$$

2 × 2 matrix 00	$n \times n$ matrix	Invertibility and rank
		invertible

The algorithm tells us that A is invertical line
because the columns left of the vertical line
has leading 1's.
$$\begin{bmatrix} 1 & 0 & 0 & | & \frac{10}{25} & 0 & -\frac{5}{25} \\ 0 & 1 & 0 & | & \frac{10}{25} & -\frac{10}{25} & \frac{7}{25} \\ 0 & 0 & 1 & | & -\frac{3}{25} & \frac{5}{25} & \frac{4}{25} \end{bmatrix} = \begin{bmatrix} Id & | A^{-1} \end{bmatrix}$$

Therefore, A^{-1} exists, and

$$A^{-1} = \begin{bmatrix} \frac{10}{25} & 0 & -\frac{5}{25} \\ \frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\ -\frac{3}{25} & \frac{5}{25} & \frac{4}{25} \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 10 & 0 & -5 \\ 1 & -10 & 7 \\ -3 & 5 & 4 \end{bmatrix}$$

Sanity check: compute AA^{-1} and $A^{-1}A$ to double check your answer.

2×2 matrix	$n \times n$ matrix	Invertibility and rank
00	0000	•00

There is a powerful connection between invertibility and rank.

Theorem (Invertibility and rank)

An $n \times n$ matrix is invertible if and only if its rank is n.

Why? (Idea)

- Start with [A | Id].
- Perform row operations to get to an REF [B | C].
- Since [B | C] is in REF, the matrix B is an REF for A.
- By def, the rank of A is the number of leading 1s of B
- So the rank of A is the number of leading 1s of [B | C] left of the vertical line.

Determine whether each of the following matrices is invertible (without performing the algorithm).

$$a.)\begin{bmatrix}1&3&1&0\\0&1&-1&1\\0&0&1&-2\\0&0&0&1\end{bmatrix}\qquad b.)\begin{bmatrix}1&1&0&0\\0&0&1&4\\0&0&0&1\\0&0&0&0\end{bmatrix}$$

Determine whether each of the following matrices is invertible (without performing the algorithm).

	Γ1	3	1	0]	[1	1	0	0]	
	0	1	-1	1	د ا د	0	1	4	
a.)	0	0	1	-2	$b.)\begin{bmatrix}1\\0\\0\end{bmatrix}$	0	0	1	
	0	0	1 -1 1 0	1		0	0	0	

a.) The matrix is 4×4 and the rank is 4 (since the matrix is in row-echelon form and there are four leading 1s). So the matrix is invertible according to the invertibility-and-rank theorem.

b.) The matrix is 4×4 and the rank is 3 (since the matrix is in row-echelon form and there are three leading 1s). So the matrix is <u>not</u> invertible according to the theorem.

Recap Lecture 5b

- We can detect and find 2×2 inverses with an easy formula.
- We can detect and find larger inverses with a lot of work.
- We can detect invertibility from rank.
- Do required reading hw 5b + suggested pratice
- Next lecture: determinants