| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 0000           | 0000                  | 00000                  |
|                 |                |                       |                        |

## Lecture 5a

# **Matrix Inverses**

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 0000           | 0000                  | 00000                  |

#### Last time

How to multiply matrices by matrices.

## Dangers

- AB may not equal BA.
- AB = 0 doesn't always imply A = 0 or B = 0.
- AB = AC doesn't always imply B = C, even when  $A \neq 0$ .

As we will see, these dangers mean division doesn't always exist.

## Goal

Dividing by a matrix (when it is possible).

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| •00             | 0000           | 0000                  | 00000                  |

## In fact, the more elementary problem is to find inverses.

#### Intuition from real numbers

For real numbers, we can turn division into multiplication as long as we can find the inverse to the denominator.

$$\frac{p}{q} = \frac{1}{q}p = q^{-1}p$$

The inverse to q is the number  $q^{-1}$  such that

$$q^{-1}q = 1$$
 and/or  $qq^{-1} = 1$ 

Notice that if one property is true, the other automatically is.

Let's generalize these ideas to matrices!

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 0000           | 0000                  | 00000                  |

First, we need to generalize the number 1 to matrices.

## Recall: The identity matrix

The  $n \times n$  identity matrix Id is the  $n \times n$ -matrix with 1s on the diagonal and all other entries 0.

## Examples

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$$

There is no such thing as a non-square identity matrix!

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 00•             | 0000           | 0000                  | 00000                  |

## Properties of the identity matrix

For any matrix A,

$$\mathsf{Id} \mathsf{A} = \mathsf{A} \qquad \mathsf{A} \mathsf{Id} = \mathsf{A}$$

## Example

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$

This is why Id is the matrix analog of the number 1.

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | ● <b>○</b> ○○  | 0000                  | 00000                  |

#### Inverse matrices

If A is an  $n \times n$ -matrix, the **inverse of** A is the  $n \times n$ -matrix B where

```
AB = Id and BA = Id
```

The inverse of a matrix A is usually denoted  $A^{-1}$ .

#### Exercise 1

Check that

$$\begin{bmatrix} 18 & -7 \\ 5 & -2 \end{bmatrix}$$
$$\begin{bmatrix} 2 & -7 \\ 5 & -18 \end{bmatrix}$$

is the inverse to

using **both** equations in the definition.

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 0000           | 0000                  | 00000                  |

# Exercise 1 (solution)

Check that 
$$\begin{bmatrix} 18 & -7 \\ 5 & -2 \end{bmatrix}$$
 is the inverse to  $\begin{bmatrix} 2 & -7 \\ 5 & -18 \end{bmatrix}$  using **both** equations in the definition.

$$\begin{bmatrix} 18 & -7 \\ 5 & -2 \end{bmatrix} \begin{bmatrix} 2 & -7 \\ 5 & -18 \end{bmatrix} = \begin{bmatrix} 18 \cdot 2 + -7 \cdot 5 & 18 \cdot -7 + -7 \cdot -18 \\ 5 \cdot 2 + -2 \cdot 5 & 5 \cdot -7 + -2 \cdot -18 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 2 & -7 \\ 5 & -18 \end{bmatrix} \begin{bmatrix} 18 & -7 \\ 5 & -2 \end{bmatrix} =$$

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 0000           | 0000                  | 00000                  |

# Exercise 1 (solution)

Check that 
$$\begin{bmatrix} 18 & -7 \\ 5 & -2 \end{bmatrix}$$
 is the inverse to  $\begin{bmatrix} 2 & -7 \\ 5 & -18 \end{bmatrix}$  using **both** equations in the definition.

$$\begin{bmatrix} 18 & -7 \\ 5 & -2 \end{bmatrix} \begin{bmatrix} 2 & -7 \\ 5 & -18 \end{bmatrix} = \begin{bmatrix} 18 \cdot 2 + -7 \cdot 5 & 18 \cdot -7 + -7 \cdot -18 \\ 5 \cdot 2 + -2 \cdot 5 & 5 \cdot -7 + -2 \cdot -18 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \checkmark$$

$$\begin{bmatrix} 2 & -7 \\ 5 & -18 \end{bmatrix} \begin{bmatrix} 18 & -7 \\ 5 & -2 \end{bmatrix} = \begin{bmatrix} 2 \cdot 18 + -7 \cdot 5 & 2 \cdot -7 + -7 \cdot -2 \\ 5 \cdot 18 + -18 \cdot 5 & 5 \cdot -7 + -18 \cdot -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \checkmark$$

$$- \text{cond} \quad \text{of colution} = \begin{bmatrix} 2 \cdot 18 + -7 \cdot 5 & 2 \cdot -7 + -7 \cdot -2 \\ 5 \cdot 18 + -18 \cdot 5 & 5 \cdot -7 + -18 \cdot -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \checkmark$$

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 0000           | 0000                  | 00000                  |



| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 000•           | 0000                  | 00000                  |

#### "The" inverse

The inverse of a matrix is unique...if it exists!

This is why we can use unambiguous notation like  $A^{-1}$ .

If  $A^{-1}$  exists, we say the matrix A is **invertible**. If  $A^{-1}$  doesn't exist, we say A is **non-invertible** or **not invertible**.

Left inverses and right inverses are the same

If AB = Id is true, then BA = Id is automatically true!

4 when A and B are both square matrices !

A non-square matrix cannot have an inverse!

$$\begin{bmatrix} +++ \\ 2 \times 3 \\ A \end{bmatrix} = \begin{bmatrix} ++ \\ 2 \times 2 \\ A \end{bmatrix} = \begin{bmatrix} ++ \\ 3 \times 3 \\ 3 \times 3 \end{bmatrix}$$

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 0000           | ●000                  | 00000                  |

We can use inverses to rearrange equations!

Example

Assume that AB = C and A is invertible. If we multiply both sides by  $A^{-1}$  on the **left**, we get

$$A^{-1}(AB) = A^{-1}C$$
  
Id B = A^{-1}C  
B = A^{-1}C

#### Order matters!

We must do the same thing to each side of an equation! If AB = C, it would be **wrong** to assume that  $A^{-1}(AB) = CA^{-1}$ .

## Two different kinds of division

In general,  $A^{-1}C \neq CA^{-1}$ . Both could be called 'C divided by A', so we avoid the terminology entirely, and we never write  $\frac{C}{A}$ .

| Identity<br>000 | y matrix           | Inverse Matrix<br>0000 | Rearranging equations<br>0●00 | Solving linear systems |
|-----------------|--------------------|------------------------|-------------------------------|------------------------|
|                 | Exercise 3         |                        |                               |                        |
|                 | If B is inve       | rtible, rewrite each   | of the equations as for       | mulas for A.           |
|                 | ● BAB <sup>-</sup> | $^{1} = C$             |                               |                        |
|                 | <b>2</b> BA =      | -BA + CB               |                               |                        |

| Identity matrix<br>000                                        | Inverse Matrix<br>0000 | Rearranging equations<br>0●00 | Solving linear systems |
|---------------------------------------------------------------|------------------------|-------------------------------|------------------------|
| Exercise 3                                                    |                        |                               |                        |
| If B is inve                                                  | ertible, rewrite each  | n of the equations as form    | nulas for A.           |
| ● BAB <sup>-</sup>                                            | $^{-1} = C$            |                               |                        |
| <b>2</b> BA =                                                 | -BA + CB               |                               |                        |
| <ul> <li>I BAB<sup>−</sup></li> </ul>                         | $^{-1} = C$            |                               |                        |
| $BAB^{-1}B$                                                   | = CB                   |                               |                        |
| BA                                                            | = CB                   |                               |                        |
| $B^{-1}BA=B$                                                  | $B^{-1}CB$             |                               |                        |
| A = B                                                         | $^{-1}CB$              |                               |                        |
| Sanity check<br>in $A = B^{-1}C$<br>the original<br>equation. | : Plug<br>CB into      |                               |                        |

| Identity matrix Invers                    | e Matrix         | Rearranging equations<br>0●00               | Solving linear systems |
|-------------------------------------------|------------------|---------------------------------------------|------------------------|
| Exercise 3                                |                  |                                             |                        |
| If B is invertible, re                    | ewrite each of t | the equations as formu                      | las for A.             |
| $\bullet BAB^{-1} = C$                    |                  |                                             |                        |
| ② BA = −BA +                              | CB               |                                             |                        |
| $\bigcap$ $PAP^{-1} - C$                  | (2)              | BA = -BA + CB                               |                        |
| $\bigcirc$ BAB = C                        | $\bigcup$        | BA + BA = CB                                |                        |
| $BAB^{-1}B=CB$                            |                  | (B + B)A = CB                               |                        |
| BA = CB                                   |                  | 2BA = CB                                    |                        |
| $B^{-1}BA=B^{-1}CB$                       |                  | $BA=rac{1}{2}CB$                           |                        |
| $A = B^{-1}CB$                            |                  | $B^{-1}BA=B^{-1}\left(\frac{1}{2}CB\right)$ | )                      |
| Sanity check: Plug in $A = B^{-1}CB$ into |                  | $A = B^{-1} \left( \frac{1}{2} C B \right)$ | )                      |
| the original equation.                    |                  | $A = \boxed{\frac{1}{2}B^{-1}CB}$           |                        |
|                                           | Check: Plug i    | in $A = \frac{1}{2}B^{-1}CB$ into the o     | riginal equation.      |

11/18

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 0000           | 0000                  | 00000                  |

## Exercise 4

Let A be invertible. Check whether the inverse to  $A^{\top}$  is  $(A^{-1})^{\top}$ .

We will verify that  $A^T(A^{-1})^T = Id$  and  $(A^{-1})^T A^T = Id$ .

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = Id^{T} = Id^{T}$$

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = Id^{T} = Id^{T}$$

$$Id^{T} = I$$

and

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 0000           | 0000                  | 00000                  |

#### Exercise 4

Let A be invertible. Check whether the inverse to  $A^{\top}$  is  $(A^{-1})^{\top}$ .

We will verify that  $A^T(A^{-1})^T = Id$  and  $(A^{-1})^T A^T = Id$ .

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = Id^{T} = Id^{T}$$

and

$$(A^{-1})^T A^T = (AA^{-1})^T = Id^T = Id$$

We have shown that  $(A^T)^{-1} = (A^{-1})^T$ .

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 0000           | 0000                  | 00000                  |

#### Properties of inverses

Assume A, B, and  $A_1, A_2, ..., A_n$  are invertible matrices.

- $Id^{-1} = Id$
- $(A^{-1})^{-1} = A$ . n=3
- $(A^n)^{-1} = (A^{-1})^n$ , for example,  $(AAA)^{-1} = A^{-1} A^{-1} A^{-1}$ .
- $(A^{\top})^{-1} = (A^{-1})^{\top}$ .
- $(A_1A_2 \cdots A_n)^{-1} = A_n^{-1} \cdots A_2^{-1} A_1^{-1}$ , e.g.,  $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$

## Defining negative powers

If A is invertible, then for any integer *n*, define  

$$A^{n} := \begin{cases}
A^{n} & \text{if } n > 0 \\
\text{Id} & \text{if } n = 0 \\
(A^{-1})^{|n|} & \text{if } n < 0
\end{cases} A^{-4} = \overline{A^{-4}} A^{-4} A^{-4}$$

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 0000           | 0000                  | 0000                   |

## Solving systems of linear equations with inverses

Suppose that a system of *n* linear equations in *n* variables is written in matrix form as  $A\vec{x} = \vec{b}$ . If A is invertible, then this system has a unique solution, given by  $\vec{x} = A^{-1}\vec{b}$ 

If A is non-invertible, then we can't say anything yet.

Exercise 5

Solve the system of linear equations

$$2x - 7y = 3$$
  
$$5x - 18y = 8$$

using inverses.

 Identity matrix
 Inverse Matrix
 Rearranging equations
 Solving linear systems

 000
 000
 0000
 0000
 0000

# Systems of Linear Equations and Inverses

## Exercise 5 (solution)

(Step i) Turn the following system of linear equations into a matrix equation of the form  $A\vec{x} = \vec{b}$ .

$$2x - 7y = 3$$
  
$$5x - 18y = 8$$

The matrix equation in the form  $A\vec{x} = \vec{b}$  is  $\begin{bmatrix}
2 & -7 \\
5 & -18
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
3 \\
8
\end{bmatrix}$ Coefficients variables constant terms

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 0000           | 0000                  | 00000                  |

## Exercise 5 (solution)

(Step ii) Solve by computing  $A^{-1}\vec{b}$  (we already computed  $A^{-1}$  in Exercise 1).

 $\operatorname{Id} \vec{x} = \operatorname{A}^{-1} \vec{b}$ 

 $\vec{x} = A^{-1}\vec{b}$ 

Since  $A^{-1}$  exists and has the property  $A^{-1}A = Id$  we obtain the following.  $A\vec{x} = \vec{b}$   $A^{-1}(A\vec{x}) = A^{-1}\vec{b}$  $(A^{-1}A)\vec{x} = A^{-1}\vec{b}$ 

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 0000           | 0000                  | 00000                  |

## Exercise 5 (solution)

(Step ii) Solve by computing  $A^{-1}\vec{b}$  (we already computed  $A^{-1}$  in Exercise 1).

Since  $A^{-1}$  exists and has the property  $A^{-1}A = I$ , we obtain the following.  $A\vec{x} = \vec{b}$ 

$$A^{-1}(A\vec{x}) = A^{-1}\vec{b}$$

$$(A^{-1}A)\vec{x} = A^{-1}\vec{b}$$

$$Id \ \vec{x} = A^{-1}\vec{b}$$

$$\vec{x} = A^{-1}\vec{b}$$

i.e.,  $A\vec{x} = \vec{b}$  has the unique solution given by  $\vec{x} = A^{-1}\vec{b}$ . Therefore,

$$\vec{x} = A^{-1} \begin{bmatrix} 3\\8 \end{bmatrix} = \begin{bmatrix} 18 & -7\\5 & -2 \end{bmatrix} \begin{bmatrix} 3\\8 \end{bmatrix} = \begin{bmatrix} -2\\-1 \end{bmatrix}$$

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 0000           | 0000                  | 00000                  |

## Exercise 5 (solution)

(Step iii) After computing  $A^{-1}\vec{b}$ , and plug it back in the system.

Sanity check: verify that x = -2, y = -1 is a solution to the system (plug in).

$$2(-2) - 7(-1) = 3$$
  
 $5(-2) - 18(-1) = 8$ 

| Identity matrix | Inverse Matrix | Rearranging equations | Solving linear systems |
|-----------------|----------------|-----------------------|------------------------|
| 000             | 0000           | 0000                  | 0000                   |
|                 |                |                       |                        |

## Recap Lecture 5a

- Some but not all square matrices have an inverse.
- When an inverse exists, it is unique.
- When the inverse exists, it allows us to rearrange equations.
- In particular, we can solve  $A\vec{x} = \vec{b}$  for  $\vec{x}$ .

Next time: How to determine when the inverse exists and how to compute it.