Lecture 4b

Matrix Multiplication (properties of matrix arithmetic)

Properties of matrix arithmetic

Last Time

Matrix multiplication violates one of the basic rules of traditional arithmetic: matrix multiplication does not always commute.

Goal

What familiar properties does matrix arithmetic have?

Matrix addition is associative and commutative

Associativity of addition

$$
A+(B+C)=(A+B)+C
$$

So, we can write $A+B+C$ to mean

$$
\text { "A }+(B+C) \text { or }(A+B)+C, \text { your choice" }
$$

Commutativity of addition

$$
A+B=B+A
$$

As a result, we can rearrange sums of matrices however we want.

$$
\begin{aligned}
A+B+C & =C+A+B \\
& =B+C+A \\
& =C+B+A
\end{aligned}
$$

Multiplication distributes over addition

$$
A(B+C)=A B+A C \quad(B+C) A=B A+C A
$$

Exercise 4
Compute $\mathrm{Av}+\mathrm{Aw}$, where $\mathrm{A}:=\left[\begin{array}{cc}2 & 1 \\ -1 & 1 \\ 3 & 0\end{array}\right], \mathrm{v}:=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathrm{w}:=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
Note: It takes less effort to compute $A(v+w)$ than to compute $A v+A w$.

Multiplication distributes over addition

$$
A(B+C)=A B+A C \quad(B+C) A=B A+C A
$$

Exercise 4

$$
\text { Compute } A v+A w \text {, where } A:=\left[\begin{array}{cc}
2 & 1 \\
-1 & 1 \\
3 & 0
\end{array}\right], v:=\left[\begin{array}{l}
1 \\
2
\end{array}\right], w:=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Note: It takes less effort to compute $\mathrm{A}(\mathrm{v}+\mathrm{w})$ than to compute $A v+A w$.

$$
\begin{aligned}
& v+w=\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right] \\
& A(v+w)=\left[\begin{array}{cc}
2 & 1 \\
-1 & 1 \\
3 & 0
\end{array}\right]\left[\begin{array}{c}
3 \\
3
\end{array}\right]=\left[\begin{array}{l}
2.3+1.3 \\
\left.\frac{1.3+1.3}{3.3+0.3}\right]
\end{array}=\left[\begin{array}{l}
9 \\
0 \\
9
\end{array}\right]\right.
\end{aligned}
$$

Matrix multiplication is associative

Associativity of multiplication

$$
A(B C)=(A B) C
$$

So, we can write $A B C$ to mean " $A(B C)$ or $(A B) C$, your choice".

Exercise 5

Check that $(A B) C=A(B C)$, where

$$
A:=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & -1
\end{array}\right] \quad B:=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 2 & 0 \\
2 & -1 & 2
\end{array}\right] \quad C:=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Compute $\mathrm{A}(\mathrm{BC})$ and $(\mathrm{AB}) \mathrm{C}$. Which took more computation?

Compute $A(B C)$ and $A B) C$. Which took more computation?

$$
\underbrace{A B}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 2 & 0 \\
2 & -1 & 2
\end{array}\right]==\left[\begin{array}{ccc}
5 & 1 & 6 \\
3 & 0 & 4 \\
-2 & 1 & -2
\end{array}\right] \begin{gathered}
\text { Took } \\
\text { move } \\
\text { fine }
\end{gathered}
$$

$$
(A B) C=\left[\begin{array}{rrr}
5 & 1 & 6 \\
3 & 0 & 4 \\
-2 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{r}
5.1+1.2+6.3 \\
3.1+0.2+4.3 \\
-2.1+1.2+-2.3
\end{array}\right]=\left[\begin{array}{c}
25 \\
15 \\
-6
\end{array}\right]
$$

$$
\begin{aligned}
& \underline{B C}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 2 & 0 \\
2 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
3 \times 1 \\
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
3 \times 1 \\
\frac{1.1+0.2+0.3}{-1.1+2.2+0.3} \\
\hline 2.1+-1.2+2.3
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
6
\end{array}\right] \\
& A(B C)=\underbrace{\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & -1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
1 \\
3 \\
6
\end{array}\right]}_{B C}=\left[\begin{array}{l}
{\left[\begin{array}{l}
1.1+2.3+3.6 \\
0.1+1.3+2.6 \\
0.1+0.3+-1.6
\end{array}\right]}
\end{array}\right]\left[\begin{array}{c}
25 \\
15 \\
-6
\end{array}\right]
\end{aligned}
$$

So far

- Matrix addition is both associative and commutative
- Matrix multiplication is associative but is not commutative

Can you think of a familiar arithmetic operation (from elementary school) which is not associative?

Transpose reverses the order of multiplication

$$
(\mathrm{AB})^{\top}=\mathrm{B}^{\top} \mathrm{A}^{\top}
$$

Exercise 6

$$
\text { Check that }(A B)^{\top}=B^{\top} A^{\top} \text { for } A:=\left[\begin{array}{cc}
2 & 1 \\
-1 & 1 \\
3 & 0
\end{array}\right], \quad B:=\left[\begin{array}{cc}
1 & -1 \\
2 & 2
\end{array}\right]
$$

Exercise 6

$$
\begin{aligned}
& \text { Check that }(A B)^{\top}=B^{\top} A^{\top} \text { for } A:=\begin{array}{cc}
2 & 1 \\
-1 & 1 \\
3 & 0
\end{array}, \quad B:=\left[\begin{array}{cc}
1 & -1 \\
2 & 2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& (A B)^{\top}=\left[\begin{array}{lll}
4 & 1 & 3 \\
4 & 3 & -3
\end{array}\right] \\
& \text { ard sow is now } 3 \text { red col }
\end{aligned}
$$

$$
\begin{aligned}
& B^{\top}=\left[\begin{array}{rr}
1 & 2 \\
-1 & 2
\end{array}\right], A^{\top}=\left[\begin{array}{rrr}
2 & -1 & 3 \\
1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Theorem

Suppose A and B are matrices.
(1) $\left(A^{T}\right)^{T}=A$.
(2) $(r A)^{T}=r\left(A^{T}\right)$ if r is a number.
(3) $(A+B)^{T}=A^{T}+B^{T}$.

Algebra with matrices

Using these rules, we can rearrange expressions involving matrices.

Exercise 7

Solve the following expression for B. Write B in terms of A.

$$
\left(\mathrm{A}^{\top}+2 \mathrm{~B}^{\top}\right)^{\top}=2 \mathrm{~A}
$$

Theorem

(1) $\left(A^{T}\right)^{T}=A$.
(2) $(r A)^{T}=r\left(A^{T}\right)$ if r is a number.
(3) $(A+B)^{T}=A^{T}+B^{T}$.

Exercise 7 (solution)

$$
\begin{aligned}
\left(\mathrm{A}^{\top}+2 \mathrm{~B}^{\top}\right)^{\top} & =2 \mathrm{~A}, \text { the original equation } \\
A^{\top}+2 B^{\top} & =(2 A)^{\top} \text { by part (1) } \\
A^{\top}+2 B^{\top} & =2\left(A^{\top}\right) \text { by part (2) or (3) } \\
2 B^{\top} & =A^{\top}, \text { after adding }-A^{\top} \text { to both sides } \\
B^{\top} & =\frac{1}{2}\left(A^{\top}\right)=\left(\frac{1}{2} A\right)^{T} \text { by part (2) } \\
B & =\frac{1}{2} A \text { by part (1) }
\end{aligned}
$$

To verify your solution, plug in $B=\frac{1}{2} A$ back into the original equation.

Let's return to the properties that aren't true.

Recall: Matrix multiplication is not commutative

$A B$ may not equal $B A$.

So, although we can pick the order in which we multiply pairs of neighbors (due to associativity), for example,

$$
A B C D=A((B C) D)
$$

we cannot rearrange the matrices.
$A B C D$ may not equal $A D B C$

Example

Convince yourself that

$$
\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Warning: The product of two non-zero matrices might be zero
$A B=0$ doesn't always imply $A=0$ or $B=0$.
This never happens for numbers: if $a b=0$, then $a=0$ or $b=0$.

There's a more general version of this phenomenon.

Warning: Multiplication can't always be cancelled

Having $A B=A C$ and $A \neq 0$ doesn't guarantee $B=C$.
This never happens for numbers: if $a b=a c$ and $a \neq 0$, then $b=c$.

Exercise 8

Compute the following.

$$
\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text { and }\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]
$$

There's a more general version of this phenomenon.

Warning: Multiplication can't always be cancelled

Having $A B=A C$ and $A \neq 0$ doesn't guarantee $B=C$.

This never happens for numbers: if $a b=a c$ and $a \neq 0$, then $b=c$.

Exercise 8

Compute the following.

$$
\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text { and }\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]
$$

$$
\begin{aligned}
{\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] } & =\left[\begin{array}{l}
1.1+-1.2 \\
-1.1+1.2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
{\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
-2 \\
-1
\end{array}\right] } & =\left[\begin{array}{c}
1 .-2+-1 .-1 \\
-1 .-2+1 .-1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

Recap

- Some familiar properties of arithmetic hold for matrices.
- Some familiar properties don't!
...wait, what happened to division?

Next time

Why division doesn't always work, and how to perform division when it does work.

